
MATH 1D, WEEK 1 – SEQUENCES

INSTRUCTOR: PADRAIC BARTLETT

Abstract. These are the lecture notes from week 1 of Ma1d, the Caltech

mathematics course on sequences and series.

1. Class Information

• Class Hours: 8-9 pm, on Tuesdays and Thursdays in 151 Sloan.
• Office Hours: 5-6 pm and 10-11 pm on Wednesday, in 360 Sloan.
• Contact Information: My email address is padraic@caltech.edu, and my

office is 360 Sloan.
• Class Website: www.its.caltech.edu/∼padraic
• Homework and Tests: There will be four homework sets, each valued at 10%

of your final grade, one midterm valued at 30% of your final grade, and one
final valued at 30% of your final grade. Homework sets will generally be
about 4 problems long; unless otherwise stated, you are expected to prove
that all of your answers are correct. Problems will tend to be short on
calculation and long on conceptualization, so if you find yourself looking
at a long or “ugly” solution, try again! There is almost certainly an easier
way.

As well, I highly recommend that you look at the problem sets before,
say, Wednesday night in office hours – many of the problems in this class
will not have an “obvious” solution at first glance, and sleeping on them
for a few days will make life much easier for you as students.

The homework policy is that all textbooks and the Internet is fair game,
provided that you don’t go looking through online forums for solutions to
your questions. Collaboration, as well, is strongly encouraged. However,
make sure to write up all of your problems independently, cite any texts that
you use if you take parts of solutions from them, and write up everything
in your own words (something that everyone should do in any class they
are in.) The midterm and final policy is the same, except no collaboration
is allowed.
• Homework due date: Thursdays at 4 pm, in the Ma1d class box.
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2. Class Overview

This course aims to “fill in” the gaps between the material covered in Ma1a,
section 1 and the normal sections of Ma1a; specifically, it aims to cover the concepts
of sequences and series as they extend to the real and complex numbers. The
following is a rough road map of the topics we will be covering throughout the
course:

• Sequences:
– basic definitions
– concept of convergence
– the Bolzano-Weierstrass theorem
– Cauchy sequences, and their connections to convergence

• Series:
– basic definitions
– various criteria and convergence tests: i.e. the comparison, ratio, and

integral tests
– absolute convergence; its definition and several applications

• Extensions of the previous concepts beyond the real numbers:
– sequences and series of complex numbers; additional convergence tests
– sequences and series of functions, with attention to the concepts of

∗ uniform convergence
∗ infinite Taylor series
∗ power series, both real and complex

3. Sequences - Basic Definitions

The three lists below are all examples of sequences. The first is the sequence { 1
n
}∞n=1,

the second is the sequence {n2}∞n=1, and the third is {(−1)n}∞n=1.

1,
1
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,

1
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,

1
4
,

1
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,

1
6
,

1
7
, . . .

1, 4, 9, 16, 25, 36, 49, . . .
− 1, 1,−1, 1,−1, 1, . . .

Sequences of real numbers are fairly intuitive mathematical concepts; we often
think of them as just “infinite lists of numbers,” indexed by the natural numbers
1, 2, 3, 4, . . .. We can rigorously define a sequence by calling any labeled collection
of numbers a1, a2, a3, a4 . . ., where there is one an for every natural number n, a
sequence; more simply, we can say that a sequence of real numbers is any function
from N → R. Regardless of which definition you choose, however, the idea should
be fairly clear; a sequence is simply a infinite list of real numbers. In practice, we
will usually denote sequences by the expression {an}∞n=1, where the an stand for
the various entries in the sequence.
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So: as always, whenever we introduce a new concept, we like to come up with
ways of visually understanding it. One way that comes to mind is to graph is
as though it was a function from N to R: in this case, the sequence { 1

n}
∞
n=1 is

represented by the following graph:

The problem with this view is that it only depicts a tiny amount of the entire
sequence – from looking at this picture, we don’t have any good idea as to what
the “entire” sequence might look like, or where it is concentrated.

There are a number of solutions to this issue that can be created, but one of the
simplest is to just graph the sequence as a series of points on a number line. In this
way, the sequence { 1

n}
∞
n=1 is represented by the graph

The advantage of this picture is that by looking at it, we can get a good feel for
where our sequence { 1

n}
∞
n=1 is “going” – i.e. by looking at the graph, we can see

intuitively that the terms of this sequence are “heading” to zero.
To make this notion of “heading” to a number more precise, we offer the following

definition:

Definition 3.1. We say that a sequence {an}∞n=1 converges to a number l, and
write limn→∞ an = l, if and only if for every ε > 0 there is a natural number N
such that for all n > N ,

|an − l| < ε.

This should remind you of our definitions last quarter for the limits at infinity
of a function – they look almost completely the same.

Consequently, several of our theorems from last quarter carry over to this class;
we will omit their proofs here, as they are mostly identical to the proofs of these
claims for limits we studied earlier:
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• Additivity of sequences: if limn→∞ an, limn→∞ bn both exist, then so
does limn→∞ an + bn.
• Multiplicativity of sequences: if limn→∞ an, limn→∞ bn both exist, then

so does limn→∞ anbn.
• Quotients of sequences: if limn→∞ an, limn→∞ bn both exist, and bn 6= 0

for all n, then so does limn→∞
an

bn
.

• Squeeze theorem for sequences: if limn→∞ an, limn→∞ bn both exist
and are equal to some value l, and the sequence {cn}∞n=1 is such that an ≤
cn ≤ bn, for all n, then the limit limn→∞ cn exists and is also equal to l.
• Composition of sequences and functions: if limx→c f(x) = l, limn→∞ an =
c, f is defined on every value of an, and an 6= c, then limn→∞ f(an) ex-
ists and is equal to l. (If f is continuous, we can omit the condition that
an 6= c.)

4. Sequences - Examples

To illustrate this concept of convergence, we calculate a series of examples:

Example 4.1.

lim
n→∞

1
n

= 0.

Proof. Pick any ε > 0, and choose any natural number N larger than 1
ε . Then, for

every n > N , we have ∣∣∣∣ 1n − 0
∣∣∣∣ =

1
n
<

1
N

<
1

1/ε
= ε.

Then, by the definition of convergence, we have that limn→∞
1
n = 0, as claimed. �

Example 4.2. Let b be a number in the interval (0, 1). Then

lim
n→∞

bn = 0.

Proof. So: because b ∈ (0, 1), we know that log(b) exists and is a negative number.
Consequently, we can rewrite

bn = en·log(b) =
1

en·| log(b)| .

Then, for any ε > 0, pick N to be a natural number such that

log(1/ε) < N · | log(b)|.
Then, we have that

elog(1/ε) < eN ·| log(b)|

⇔ 1/ε < eN ·| log(b)|

⇔ ε >
1

eN ·| log(b)| = bn = |bn − 0|.

Again, by the definition of convergence, we have that limn→∞ bn = 0. �

Example 4.3.

lim
n→∞

n
√
n = 1.
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Proof. So: using a similar idea to our earlier example, rewrite

n
√
n = (n)1/n = elog(n)/n.

Then, look at the sequence {log(n)/n}∞n=1. We claim that this sequence con-
verges to zero. To see this: look at the function log(x)

x .
By L’Hôpital’s rule, we know that

lim
x→∞

log(x)
x

= lim
x→∞

1/x
1

= 0.

But what does this actually mean? Well, by the definition of a limit at infinity, this
means that for any ε > 0 there is some N such that for all x > N , | log(x)/x−0| < ε
– so, in particular, for any natural number n > N we have that | log(n)/n− 0| < ε.
But that means that

lim
n→∞

log(n)
n

= 0,

as we claimed.
Then, because

• limx→0 e
x = 1,

• limn→∞
log(n)
n = 0, and

• elog(n)/n is defined for every n,

we have (by composing our sequence log(n)/n with the sequence ex) that

lim
n→∞

n
√
n = lim

n→∞
elog(n)/n = 1.

�

So, in the above proof, we did one interesting thing that it turns out holds in
complete generality – we used a continuous function to prove something about a
discrete function. Explicitly, we used the observation that

lim
x→∞

log(x)
x

= 0

to prove that

lim
n→∞

log(n)
n

= 0

It turns out that this holds in general! I.e. we have the following proposition:

Proposition 4.4. If {an}∞n=1 is a sequence, f is a function such that f(n) = an,∀n,
and limx→∞ f(x) exists, then

lim
n→∞

an = lim
x→∞

f(x).

The proof of this statement is pretty much exactly what we did in our last
example; there is nothing special about log(x)/x.
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5. Sequences - Main Theorems

So: the above has hopefully illustrated what a sequence is, and what it means
for a sequence to converge. However, we don’t really have much machinery to
study sequences properly yet – in all of our examples, we worked straight from the
definitions or just used analogues of theorems from the continuous case of limits.
While this sufficed for everything we did above, there are in fact a fairly rich set
of theorems dealing with the study of sequences: however, before we can present
these theorems, we must begin with a few basic definitions.

Definition 5.1. We call a sequence {an}∞n=1

• increasing if an < an+1, for every n,
• nondecreasing if an ≤ an+1, for every n, and
• bounded above if there is some number M such that an ≤ M , for every
n.

Similarly, we say that a sequence {an}∞n=1 is
• decreasing if an > an+1, for every n,
• nonincreasing if an ≥ an+1, for every n, and
• bounded below if there is some number M such that an ≥ M , for every
n.

(These definitions are exactly the same as they were for functions, and thus
should hopefully look familiar.)

Definition 5.2. A subsequence of the sequence {an}∞n=1 is a sequence of the
form

an1 , an2 , an3 , an4 , an5 , . . .

where the ni are an infinite sequence of natural numbers such that

n1 < n2 < n3 < n4 < n5 . . .

Essentially, a subsequence is just what you get by taking a sequence and “skip-
ping over” some of its entries. For example, the sequence

(‡) 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, . . .

has both

0, 0, 0, 0, 0, 0, 0, 0, 0, . . . 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .

as subsequences, because choosing all of the even entries in (‡) gives you 0, 0, 0, 0 . . .
whereas choosing the odd entries gives you the sequence 1, 1, 1, 1 . . ..

Similarly, the sequence

(?) 0, 0, 1, 0, 0, 2, 0, 0, 3, 0, 0, 4, 0, 0, 5, 0, 0, . . .

has the sequence

1, 2, 3, 4, 5, 6, . . .

as a subsequence realized by only choosing every third entry in (?).
These concepts presented, we can now move on to the subjects of this lecture:

Theorem 5.3. If {an}∞n=1 is bounded above and nondecreasing, then it converges.
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Proof. So: let A be the set consisting of all of the numbers an in our sequence. A
is bounded above, because {an}∞n=1 is; so A has a least upper bound! Call it α.
(A least upper bound α, for those of you who don’t remember, is an upper bound
for A such that every other upper bound β of A is bigger than α.)

So: we claim that

lim
n→∞

an = α.

To see this: choose any ε > 0. Because α is a least upper bound, we know that
no number smaller than α can be an upper bound – so, in specific, α− ε is not an
upper bound. But what does this mean? Just that there is some aN ∈ A such that

an > α− ε⇔ ε > α− aN .
But because the an are nondecreasing and bounded above by α, we know that
actually

ε > |α− an|,∀n > N.

So limn→∞ an converges (specifically, to α,) just as we claimed. �

It bears noting that the same result holds if we instead stipulate that {an}∞n=1

is nonincreasing and bounded below, by just doing the same proof with greatest
lower bounds instead of least upper bounds.

Before moving onto our second theorem, we pause here to note an application of
this theorem, which allows us to determine if a sequence converges without even
knowing what it converges to:

Example 5.4. Let {βn}∞n=1 be a sequence of numbers βn ∈ [2,∞), and let

an =
n∑
k=1

1
βkk
.

We claim that the sequence {an}∞n=1 is convergent.

Proof. To see this, simply note that
• because

an+1 − an =
n+1∑
k=1

1
βkk
−

n∑
k=1

1
βkk

=
1

βn+1
n+1

> 0,

this sequence is increasing.
• Because

an =
n∑
k=1

1
βkk

<

n∑
k=1

1
2k

=
2n − 1

2n
< 1,

we know that this sequence is bounded above (where the identity
∑n
k=1

1
2k =

2n−1
2n is an inductive identity we proved in the first quarter of this course.)

As a result, we can simply apply our earlier theorem to conclude that the se-
quence {an}∞n=1 converges, even though we have no idea what it converges to! �

So: the above theorem allows us to show that sequences converge, even though
we may not know what they converge to. The next theorem is similar in flavor to
this first one; it too guarantees the existence of some object, without necessarily
telling us what it is.
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Theorem 5.5. Any sequence {an}∞n=1 has a subsequence that is either nondecreas-
ing or nonincreasing.

Proof. This proof relies entirely on one crucial concept:

Definition 5.6. Call a number n ∈ N a peak point of a sequence {an}∞n=1 if
am < an, for all m > n. (In the sequence graphed below, for example, 2 and 5 are
peak points.)

So, there are trivially two possible cases we have to consider: either
• there are infinitely many peak points, or
• there are only finitely many peak points.

If we are in the first case: let n1 < n2 < n3 < n4 . . . be an ordered infinite list of
the peak points. Then, by definition, ank

> ank+1 , for every k, because these are
all peak points! So this is a decreasing sequence.

So it suffices to consider the second case, where there are only finitely many
peak points. Let N be the collection of all of the peak points. This is a finite set;
so there is some natural number n1 such that n1 > m, ∀m ∈ N . But this means
specifically that n1 is not a peak point (as it’s bigger than every peak point) – so,
by definition, there has to be some value n2 > n1 such that an2 ≥ an1 . As well, n2

is also not a peak point, because it is bigger than n1 and thus all of N ; so there
must be some n3 such that n3 > n2 and an3 ≥ an2 . Continuing inductively, we get
an infinte sequence of values ni such that an1 ≤ an2 ≤ an3 . . . – i.e. a nondecreasing
sequence! So we are done. �

While this theorem is often used to study sequences by itself, its most celebrated
application is to the following corollary:

Corollary 5.7. (Bolzano-Weierstrass Theorem) Any bounded sequence must con-
tain a convergent subsequence.

Proof. By the theorem above, we know that every bounded sequence has to have
either a nondecreasing or a nonincreasing bounded subsequence; but any such sub-
sequence must converge to some value by our earlier theorem! �
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