MATH 1D, MIDTERM - QUESTIONS

INSTRUCTOR: PADRAIC BARTLETT

Instructions: Do four of the following six questions. If you do more than that, your top four scores will be graded. Good luck! You have until Jan. 28th at 4; as a reminder, the test is open notes/books and collaboration is not allowed.

Question 0.1. Prove that the following limits hold:

$$
\begin{array}{ll}
(A) & \lim _{n \rightarrow \infty} \frac{n}{n+1}-\frac{n+1}{n}=0 \\
(B) & \forall r>0, \lim _{n \rightarrow \infty} \sqrt[n]{r}=1 \\
(C) & \forall a, b>0, \lim _{n \rightarrow \infty} \sqrt[n]{a^{n}+b^{n}}=\max \{a, b\} .
\end{array}
$$

Question 0.2. Determine whether the following sums converge or diverge, and prove your answer:

$$
\begin{array}{ll}
\text { (A) } & \sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)} \\
\text { (B) } & \sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{3}} \\
(C) & \sum_{n=2}^{\infty} \frac{n^{2} \log (n) \cdot 2^{n}}{n!}
\end{array}
$$

Question 0.3. Prove that a sequence cannot converge to two different limits.
Question 0.4. Prove that if the sum $\sum_{n=1}^{\infty} a_{n}^{2}$ converges, then so must the sum $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{\beta}}$, for any value of $\beta>1 / 2$. (hint: look at the second HW!)
Question 0.5. Suppose that the sum $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent, and $\left\{a_{n_{k}}\right\}_{k=1}^{\infty}$ is a subsequence of $\left\{a_{n}\right\}_{n=1}^{\infty}$. Show that $\sum_{k=1}^{\infty} a_{n_{k}}$ is also absolutely convergent.

Question 0.6. Find a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

- $\lim _{x \rightarrow \infty} f(x)$ does not exist, and
- $\int_{0}^{\infty} f(x) d x=1$.

[^0]
[^0]: Date: Due Date: Thursday, Jan. 28, at 4 p.m.

