MATH 1D, FINAL - QUESTIONS

INSTRUCTOR: PADRAIC BARTLETT

Instructions: Choose four of the following nine questions to complete. (choose *wisely*.) If you do more than that, your top four scores will be graded. As a reminder, the test is open notes/books and collaboration is not allowed; however, you *are* allowed to contact me if you are totally confused about any of the questions, and should not hesitate to do so. Good luck!

0.1. Calculations.

Question 0.1. Find the following limits:

$$
\begin{array}{ll}
(A) & \lim _{n \rightarrow \infty} \sqrt[n]{n} \\
(B) & \lim _{n \rightarrow \infty} \sqrt[n]{n^{2}+n} \\
(C) & \lim _{n \rightarrow \infty} \frac{a^{n}-b^{n}}{a^{n}+b^{n}}, \text { for any } a, b>0
\end{array}
$$

Question 0.2. Determine whether the following sums converge or diverge, and prove your answer:

$$
\begin{array}{ll}
(A) & \sum_{n=2}^{\infty} \frac{1}{n \log (n)} \\
(B) & \sum_{n=1}^{\infty} \frac{n!}{n^{n}}
\end{array}
$$

Question 0.3. Using Taylor series, evaluate the following infinte sums:
(A) $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6} \ldots$
(B) $\quad \pi-\frac{\pi^{3}}{3!}+\frac{\pi^{5}}{5!}-\frac{\pi^{7}}{7!}+\ldots$
(C) $\quad-1+\log (2)-\frac{(\log (2))^{2}}{2}+\frac{(\log (2))^{3}}{3!}-\frac{(\log (2))^{4}}{4!}+\ldots$
(Hint: look at page 287 in Apostol for all of the Taylor series you'll need to do this question.)

[^0]
0.2. Constructions.

Question 0.4. Create a sequence $\left\{f_{n}\right\}$ of discontinuous functions that converge uniformly to a continuous function. Prove that this convergence is indeed uniform.
Question 0.5. Find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the integral $\int_{0}^{\infty} f(x) d x$ exists, but the integral $\int_{0}^{\infty}|f(x)| d x$ does not exist.
(Hint: can you think of a series that is conditionally convergent but not absolutely convergent? How can you turn this series into a function?)
Question 0.6. Find all of the complex numbers z such that

- $z^{12}=1$, but
- $z^{k} \neq 1$, for any natural number k less than 12 .

What is their product? What is their sum?
(Hint: you can do this directly using the polar expression $r e^{i \theta}$ for a complex number.)

0.3. Revisiting Old Problems.

Question 0.7. In week six, we used the three equations

$$
\begin{aligned}
\sin (z) & =z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\frac{z^{9}}{9!}-\ldots, \\
\cos (z) & =1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\frac{z^{8}}{8!}-\ldots, \text { and } \\
e^{z} & =1+z+\frac{z^{2}}{2}+\frac{z^{3}}{3!}+\frac{z^{4}}{4!}+\frac{z^{5}}{5!}+\ldots
\end{aligned}
$$

to show that $e^{i z}=\cos (z)+i \sin (z)$.
Using this, prove that

$$
\sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}
$$

Question 0.8. On the third problem of homework 4, we showed that a power series of an even function $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ has $a_{n}=0$ whenever n is odd, and that a power series of an odd function $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ has $a_{n}=0$ whenever n is even.

Using ideas similar to that proof, take any complex power series $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, such that $f(z)=f(i z)$, and show that $a_{n}=0$ whenever n is not a multiple of 4 .
Question 0.9. On the first problem of homework 2, we proved that there were a pair of sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ of positive numbers such that

- the sums $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$ and $\sum_{n=1}^{\infty} \frac{1}{b_{n}}$ both diverged, but
- the sum $\sum_{n=1}^{\infty} \frac{1}{a_{n}+b_{n}}$ converged.

Find another such pair of sequences that satisfy the above conditions, and that are strictly increasing.

[^0]: Date: Due Date: Thursday, Feb. 18, at 4 p.m. in the box / 8 p.m. in class.

