
Math 1c TA: Padraic Bartlett

Recitation 9: Green’s Theorem

Week 9 Caltech 2013

1 Green’s Theorem: Motivation, Statement and Examples

Today’s lecture, like almost every lecture we’ve given this quarter, is about how we can
extend a concept from one-dimensional calculus to higher dimensions. Throughout this
course, we’ve already extended the concepts of limits, derivatives, several derivative tech-
niques, integrals, and several integral techniques from R1 to Rn; basically, whenever we’ve
seen anything in single-variable calculus, we’ve been able to extend it to Rn. Loosely speak-
ing, there’s really only one major theorem that we haven’t extended yet: the Fundamental
Theorem of Calculus, which stated that (for f : R→ R a C1 function)∫ b

a

d

dx
(f(x))dx = f(b)− f(a).

In other words, knowing the behavior of the derivative over an interval is equivalent to
knowing the function’s original values at the endpoints of that interval. This, you may
remember, was a remarkably powerful technique: in single-variable calculus, the FTC often
allowed us to transform knowledge of the derivative (often a far simpler thing than the
original function) over a region into the function’s actual behavior on the boundary of this
region, and vice-versa.

A natural question to ask, then, is whether we can extend this to higher dimensions.
I.e. take a region R ⊂ R2, with boundary ∂R. Can we relate the behavior of a function on
∂R to the behavior of some sort of derivative on all of R?

As it turns out, we can! This is precisely Green’s theorem; to state it formally, we first
make the following two definitions.

Definition. A simple closed curve γ is a map [a, b]→ Rn such that

• γ(a) = γ(b),

• γ has finite length, and

• γ does not intersect itself: i.e. for any two points x 6= y ∈ [a, b], γ(x) = γ(y) if and
only if x and y are the two endpoints a, b.

Example. The following illustrates some closed curves that are simple, and some closed
curves that are not simple:
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, ,

(simple closed curves) (not simple closed curves)

Definition. Suppose that a simple closed curve γ is also the boundary of some region R.
We say that a curve is positively oriented if travelling along our curve in the direction
given by γ keeps R on the “left” of the curve. Similarly, a parametrization is negatively
oriented if travelling along the curve keeps R on the “right.”

Example. For example, the parametrization γ+(t) = (cos(t), sin(t)) is a positively-oriented
parametrization with respect to the unit disk. This is because moving along the unit disk
using γ keeps the unit disk always on our left. Similarly, the parametrization γ−(t) =
(cos(t),− sin(t)) is negatively-oriented, because the unit disk is always on the right of our
parametrization.

(positive) (negative)

Theorem 1 (Green’s Theorem.) Suppose that R is some region in R2 such that R’s bound-
ary is given by the curve C1, and that γ is a positive parametrization of c1. Suppose that P
and Q are a pair of maps R2 → R with continuous partial derivatives in an open neighbor-
hood of R. Then, we have the following equality∫∫

R

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∮
γ
Pdx+Qdy

2 Green’s Theorem: Applications

Why do we care about Green’s theorem? Well: from looking at its statement above, what
does it do? It takes a pair of functions P,Q and sends an integral involving them to an
integral involving their partials ∂Q

∂x and ∂P
∂y ; as well, it transforms a line integral over some

curve C into a integral over some region R. This suggests that we might want to use Green’s
theorem in the following situations:

1. If we’re integrating a pair of functions over some particularly awful curve, we might
want to use Green’s theorem to transform this integral into one over a region, in
the hopes that the expression ∂Q

∂x −
∂P
∂y might become zero or at the least a simpler

expression.
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2. Conversely, if we have a fairly awful region R, we might want to use Green’s theorem
to take us to a line integral, which can sometimes make our lives easier. One typical
example of this is the use of Green’s theorem to calculate the area of a region, which
is the following equation: ∫∫

R

1 dxdy =
1

2

∮
C
xdy − ydx.

The left-hand side is (by definition) the area of the region R; the right-hand side is
one possible pair of functions P , Q such that ∂Q

∂x −
∂P
∂y is 1.

We illustrate these two uses with two examples:

Example. For any two constants a, b ∈ R, and n ∈ N, find the integral∮
C+

n

a cos(x)dx+ b sin(y)dy,

where C+
n is a counterclockwise-oriented n-gon with side length 1, center at (0,0), and one

vertex on the x-axis.

Solution. So: this is (clearly) a case where our curve C+
n is far too awful to integrate along.

Having no other option, we apply Green’s theorem, which tells us that (if R is the region
enclosed by our n-gon)∮

C+
n

adx+ bdy =

∫∫
R

(
∂(b cos(y))

∂x
− ∂(a sin(x))

∂y

)
dxdy

=

∫∫
R

(0− 0) dxdy

= 0.

Done!

Example. Find the area of the ellipse

R =

{
(x, y) :

x2

a2
+
y2

b2
= 1

}
.

Solution. As mentioned before, the area of any region R can be given by the integral∫∫
R

1 dxdy; so, if we choose P (x, y) = −y/2, Q(x, y) = x/2, we have ∂Q
∂x −

∂P
∂y = 1, and thus

that ∫∫
R

1 dxdy =

∫∫
R

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

1

2

∮
C+

xdy − ydx,
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where C+ is the boundary curve of our ellipse: i.e. γ : [0, 2π]→ R2, γ(t) = (a cos(t), b sin(t)).
Calculating, we have

1

2

∮
C+

xdy − ydx =
1

2

∫ 2π

0
(−y, x)

∣∣∣
γ(t)
· γ′(t)dt

=
1

2

∫ 2π

0
(−b sin(t), a cos(t)) · (−a sin(t), b cos(t))dt

=
1

2

∫ 2π

0
ab(sin2(t) + cos2(t))dt

=
1

2

∫ 2π

0
ab dt

= abπ.

It bears noting that we had many possible choices of P,Q above! Specifically, we could
have also chosen Q = x, P = 0; in this case, we would have had∫∫

R

1 dxdy =

∮
C+

xdy

=

∫ 2π

0
(0, a cos(t)) · (−a sin(t), b cos(t))dt

=

∫ 2π

0
ab cos2(t)dt

=

∫ 2π

0
ab

cos(2t) + 1

2
dt

=

(
ab

sin(2t)

4
+
abt

2

) ∣∣∣∣∣
2π

0

= abπ.

This is the same answer! This is just an aside, to illustrate that you can have many different
choices of P , Q available to you such that ∂Q

∂x −
∂P
∂y is equal to your desired expression.

The following example provides a slightly tricker area calculation, as well as a cautionary
tale about making sure to always check your boundary conditions when you’re applying a
theorem:

Example. Find the area of the regionR enclosed by the Lissajous curve γ(t) = (cos(t), sin(3t)),
where t ranges from 0 to 2π.
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Solution. When presented with a region R enclosed by a curve γ, it’s really tempting to
simply directly apply our Green’s theorem for area result, which says that when γ is a
simple closed curve oriented counterclockwise, we have

area(R) =

∫∫
R

1dA =

∫
γ

(
−y

2
,
x

2

)
dγ.

However, if we just directly apply this here, we’ll get that∫
γ

(
−y

2
,
x

2

)
dγ =

∫ 2π

0

(
−sin(3t)

2
,
cos(t)

2

)
· (− sin(t), 3 cos(3t))dt

=
1

2

∫ 2π

0
sin(3t) sin(t) + 3 cos(3t)(cos(t)dt.

By applying your angle-addition formulas

• cos(3t) = cos(t) cos(2t)− sin(t) sin(2t),

• sin(3t) = sin(t) cos(2t) + sin(2t) cos(t),

along with your double-angle formulas, we have that this is

∫
γ

(
−y

2
,
x

2

)
dγ =

1

2

∫ 2π

0
sin(t)(sin(t) cos(2t) + sin(2t) cos(t)) + 3 cos(t)(cos(t) cos(2t)− sin(t) sin(2t))dt

=
1

2

∫ 2π

0
sin2(t) cos(2t) + sin(2t) sin(t) cos(t) + 3 cos2(t) cos(2t)− 3 sin(t) cos(t) sin(2t))dt
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=
1

2

∫ 2π

0
sin2(t) cos(2t) + 3 cos2(t) cos(2t) +

sin2(2t)

2
− 3 sin2(2t)

2
dt

=
1

2

∫ 2π

0
cos(2t) + 2 cos2(t) cos(2t)− sin2(2t)dt

=
1

2

∫ 2π

0
cos(2t) + (1 + cos(2t)) cos(2t)− 1− cos(4t)

2
dt

=
1

2

∫ 2π

0
2 cos(2t) +

1 + cos(4t)

2
− 1− cos(4t)

2
dt

=
1

2

∫ 2π

0
2 cos(2t) + cos(4t)dt

= 0.

Um. So, this is clearly false: our curve, by visual inspection, contains more area than 0.
What went wrong? Well, our curve γ is not a simple closed curve: it has self-intersections!

So: to fix that, we can break up our curve γ into three parts:

• The part where γ’s parameter t is restricted to the set [−π/3, π/3]. This is the far-
right part of our curve; here, γ is counterclockwise-oriented, and we can thus find the
area enclosed by γ by evaluating the integral

1

2

∫ π/3

−π/3
2 cos(2t) + cos(4t)dt =

sin(2t) + sin(4t)/4

2

∣∣∣∣∣
π/3

−π/3

=
3
√

3

8
.

• The part where γ’s parameter t is restricted to the set [4π/3, 5π/3]. This is the far-left
part of our curve; here, γ is also counterclockwise-oriented, and we can thus find the
area enclosed by γ by evaluating the integral

1

2

∫ 5π/3

4π/3
2 cos(2t) + cos(4t)dt =

sin(2t) + sin(4t)/4

2

∣∣∣∣∣
5π/3

4π/3

=
3
√

3

8
.

• The part where γ’s parameter t is restricted to the set[π/3, 2π/3]∪ [4π/3, 5π/3]. Here,
γ is clockwise-oriented! Therefore, to find the area enclosed by gamma, we need to
take the negative of this signed area, which is

1

2

∫ 2π/3

π/3
2 cos(2t) + cos(4t)dt+

1

2

∫ 5π/3

4π/3
2 cos(2t) + cos(4t)dt = . . . =

√
3

4
.

Notice that we’ve used a curve γ here that was piecewise defined: this is completely
OK! The only thing you need to check is that the curve is a simple closed one and
counterclockwise-oriented: once you’ve done that, it can be defined however you like.

Summing these three parts gives us that the area enclosed by our curve is 3
√

3/2.
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