Recitation 9: Green's Theorem

Week 9
Caltech 2013

1 Green's Theorem: Motivation, Statement and Examples

Today's lecture, like almost every lecture we've given this quarter, is about how we can extend a concept from one-dimensional calculus to higher dimensions. Throughout this course, we've already extended the concepts of limits, derivatives, several derivative techniques, integrals, and several integral techniques from \mathbb{R}^{1} to \mathbb{R}^{n}; basically, whenever we've seen anything in single-variable calculus, we've been able to extend it to \mathbb{R}^{n}. Loosely speaking, there's really only one major theorem that we haven't extended yet: the Fundamental Theorem of Calculus, which stated that (for $f: \mathbb{R} \rightarrow \mathbb{R}$ a C^{1} function)

$$
\int_{a}^{b} \frac{d}{d x}(f(x)) d x=f(b)-f(a)
$$

In other words, knowing the behavior of the derivative over an interval is equivalent to knowing the function's original values at the endpoints of that interval. This, you may remember, was a remarkably powerful technique: in single-variable calculus, the FTC often allowed us to transform knowledge of the derivative (often a far simpler thing than the original function) over a region into the function's actual behavior on the boundary of this region, and vice-versa.

A natural question to ask, then, is whether we can extend this to higher dimensions. I.e. take a region $R \subset \mathbb{R}^{2}$, with boundary ∂R. Can we relate the behavior of a function on ∂R to the behavior of some sort of derivative on all of R ?

As it turns out, we can! This is precisely Green's theorem; to state it formally, we first make the following two definitions.

Definition. A simple closed curve γ is a map $[a, b] \rightarrow \mathbb{R}^{n}$ such that

- $\gamma(a)=\gamma(b)$,
- γ has finite length, and
- γ does not intersect itself: i.e. for any two points $x \neq y \in[a, b], \gamma(x)=\gamma(y)$ if and only if x and y are the two endpoints a, b.

Example. The following illustrates some closed curves that are simple, and some closed curves that are not simple:

(simple closed curves)

(not simple closed curves)

Definition. Suppose that a simple closed curve γ is also the boundary of some region R. We say that a curve is positively oriented if travelling along our curve in the direction given by γ keeps R on the "left" of the curve. Similarly, a parametrization is negatively oriented if travelling along the curve keeps R on the "right."

Example. For example, the parametrization $\gamma_{+}(t)=(\cos (t), \sin (t))$ is a positively-oriented parametrization with respect to the unit disk. This is because moving along the unit disk using γ keeps the unit disk always on our left. Similarly, the parametrization $\gamma_{-}(t)=$ $(\cos (t),-\sin (t))$ is negatively-oriented, because the unit disk is always on the right of our parametrization.

(positive)

Theorem 1 (Green's Theorem.) Suppose that R is some region in \mathbb{R}^{2} such that R 's boundary is given by the curve C_{1}, and that γ is a positive parametrization of c_{1}. Suppose that P and Q are a pair of maps $\mathbb{R}^{2} \rightarrow \mathbb{R}$ with continuous partial derivatives in an open neighborhood of R. Then, we have the following equality

$$
\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\oint_{\gamma} P d x+Q d y
$$

2 Green's Theorem: Applications

Why do we care about Green's theorem? Well: from looking at its statement above, what does it do? It takes a pair of functions P, Q and sends an integral involving them to an integral involving their partials $\frac{\partial Q}{\partial x}$ and $\frac{\partial P}{\partial y}$; as well, it transforms a line integral over some curve C into a integral over some region R. This suggests that we might want to use Green's theorem in the following situations:

1. If we're integrating a pair of functions over some particularly awful curve, we might want to use Green's theorem to transform this integral into one over a region, in the hopes that the expression $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$ might become zero or at the least a simpler expression.
2. Conversely, if we have a fairly awful region R, we might want to use Green's theorem to take us to a line integral, which can sometimes make our lives easier. One typical example of this is the use of Green's theorem to calculate the area of a region, which is the following equation:

$$
\iint_{R} 1 d x d y=\frac{1}{2} \oint_{C} x d y-y d x .
$$

The left-hand side is (by definition) the area of the region R; the right-hand side is one possible pair of functions P, Q such that $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$ is 1 .
We illustrate these two uses with two examples:
Example. For any two constants $a, b \in \mathbb{R}$, and $n \in \mathbb{N}$, find the integral

$$
\oint_{C_{n}^{+}} a \cos (x) d x+b \sin (y) d y
$$

where C_{n}^{+}is a counterclockwise-oriented n-gon with side length 1 , center at $(0,0)$, and one vertex on the x-axis.

Solution. So: this is (clearly) a case where our curve C_{n}^{+}is far too awful to integrate along. Having no other option, we apply Green's theorem, which tells us that (if R is the region enclosed by our n-gon)

$$
\begin{aligned}
\oint_{C_{n}^{+}} a d x+b d y & =\iint_{R}\left(\frac{\partial(b \cos (y))}{\partial x}-\frac{\partial(a \sin (x))}{\partial y}\right) d x d y \\
& =\iint_{R}(0-0) d x d y \\
& =0 .
\end{aligned}
$$

Done!
Example. Find the area of the ellipse

$$
R=\left\{(x, y): \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\right\} .
$$

Solution. As mentioned before, the area of any region R can be given by the integral $\iint_{R} 1 d x d y$; so, if we choose $P(x, y)=-y / 2, Q(x, y)=x / 2$, we have $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=1$, and thus that

$$
\iint_{R} 1 d x d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\frac{1}{2} \oint_{C^{+}} x d y-y d x
$$

where C^{+}is the boundary curve of our ellipse: i.e. $\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{2}, \gamma(t)=(a \cos (t), b \sin (t))$.
Calculating, we have

$$
\begin{aligned}
\frac{1}{2} \oint_{C^{+}} x d y-y d x & =\left.\frac{1}{2} \int_{0}^{2 \pi}(-y, x)\right|_{\gamma(t)} \cdot \gamma^{\prime}(t) d t \\
& =\frac{1}{2} \int_{0}^{2 \pi}(-b \sin (t), a \cos (t)) \cdot(-a \sin (t), b \cos (t)) d t \\
& =\frac{1}{2} \int_{0}^{2 \pi} a b\left(\sin ^{2}(t)+\cos ^{2}(t)\right) d t \\
& =\frac{1}{2} \int_{0}^{2 \pi} a b d t \\
& =a b \pi .
\end{aligned}
$$

It bears noting that we had many possible choices of P, Q above! Specifically, we could have also chosen $Q=x, P=0$; in this case, we would have had

$$
\begin{aligned}
\iint_{R} 1 d x d y & =\oint_{C^{+}} x d y \\
& =\int_{0}^{2 \pi}(0, a \cos (t)) \cdot(-a \sin (t), b \cos (t)) d t \\
& =\int_{0}^{2 \pi} a b \cos ^{2}(t) d t \\
& =\int_{0}^{2 \pi} a b \frac{\cos (2 t)+1}{2} d t \\
& =\left.\left(a b \frac{\sin (2 t)}{4}+\frac{a b t}{2}\right)\right|_{0} ^{2 \pi} \\
& =a b \pi .
\end{aligned}
$$

This is the same answer! This is just an aside, to illustrate that you can have many different choices of P, Q available to you such that $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$ is equal to your desired expression.

The following example provides a slightly tricker area calculation, as well as a cautionary tale about making sure to always check your boundary conditions when you're applying a theorem:

Example. Find the area of the region R enclosed by the Lissajous curve $\gamma(t)=(\cos (t), \sin (3 t))$, where t ranges from 0 to 2π.

Solution. When presented with a region R enclosed by a curve γ, it's really tempting to simply directly apply our Green's theorem for area result, which says that when γ is a simple closed curve oriented counterclockwise, we have

$$
\operatorname{area}(R)=\iint_{R} 1 d A=\int_{\gamma}\left(-\frac{y}{2}, \frac{x}{2}\right) d \gamma .
$$

However, if we just directly apply this here, we'll get that

$$
\begin{aligned}
\int_{\gamma}\left(-\frac{y}{2}, \frac{x}{2}\right) d \gamma & =\int_{0}^{2 \pi}\left(-\frac{\sin (3 t)}{2}, \frac{\cos (t)}{2}\right) \cdot(-\sin (t), 3 \cos (3 t)) d t \\
& =\frac{1}{2} \int_{0}^{2 \pi} \sin (3 t) \sin (t)+3 \cos (3 t)(\cos (t) d t
\end{aligned}
$$

By applying your angle-addition formulas

- $\cos (3 t)=\cos (t) \cos (2 t)-\sin (t) \sin (2 t)$,
- $\sin (3 t)=\sin (t) \cos (2 t)+\sin (2 t) \cos (t)$,
along with your double-angle formulas, we have that this is

$$
\begin{aligned}
\int_{\gamma}\left(-\frac{y}{2}, \frac{x}{2}\right) d \gamma & =\frac{1}{2} \int_{0}^{2 \pi} \sin (t)(\sin (t) \cos (2 t)+\sin (2 t) \cos (t))+3 \cos (t)(\cos (t) \cos (2 t)-\sin (t) \sin (2 t)) d t \\
& \left.=\frac{1}{2} \int_{0}^{2 \pi} \sin ^{2}(t) \cos (2 t)+\sin (2 t) \sin (t) \cos (t)+3 \cos ^{2}(t) \cos (2 t)-3 \sin (t) \cos (t) \sin (2 t)\right) d t
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \int_{0}^{2 \pi} \sin ^{2}(t) \cos (2 t)+3 \cos ^{2}(t) \cos (2 t)+\frac{\sin ^{2}(2 t)}{2}-\frac{3 \sin ^{2}(2 t)}{2} d t \\
& =\frac{1}{2} \int_{0}^{2 \pi} \cos (2 t)+2 \cos ^{2}(t) \cos (2 t)-\sin ^{2}(2 t) d t \\
& =\frac{1}{2} \int_{0}^{2 \pi} \cos (2 t)+(1+\cos (2 t)) \cos (2 t)-\frac{1-\cos (4 t)}{2} d t \\
& =\frac{1}{2} \int_{0}^{2 \pi} 2 \cos (2 t)+\frac{1+\cos (4 t)}{2}-\frac{1-\cos (4 t)}{2} d t \\
& =\frac{1}{2} \int_{0}^{2 \pi} 2 \cos (2 t)+\cos (4 t) d t \\
& =0 .
\end{aligned}
$$

Um. So, this is clearly false: our curve, by visual inspection, contains more area than 0 . What went wrong? Well, our curve γ is not a simple closed curve: it has self-intersections! So: to fix that, we can break up our curve γ into three parts:

- The part where γ 's parameter t is restricted to the set $[-\pi / 3, \pi / 3]$. This is the farright part of our curve; here, γ is counterclockwise-oriented, and we can thus find the area enclosed by γ by evaluating the integral

$$
\frac{1}{2} \int_{-\pi / 3}^{\pi / 3} 2 \cos (2 t)+\cos (4 t) d t=\left.\frac{\sin (2 t)+\sin (4 t) / 4}{2}\right|_{-\pi / 3} ^{\pi / 3}=\frac{3 \sqrt{3}}{8}
$$

- The part where γ 's parameter t is restricted to the set [$4 \pi / 3,5 \pi / 3]$. This is the far-left part of our curve; here, γ is also counterclockwise-oriented, and we can thus find the area enclosed by γ by evaluating the integral

$$
\frac{1}{2} \int_{4 \pi / 3}^{5 \pi / 3} 2 \cos (2 t)+\cos (4 t) d t=\left.\frac{\sin (2 t)+\sin (4 t) / 4}{2}\right|_{4 \pi / 3} ^{5 \pi / 3}=\frac{3 \sqrt{3}}{8}
$$

- The part where γ 's parameter t is restricted to the set $[\pi / 3,2 \pi / 3] \cup[4 \pi / 3,5 \pi / 3]$. Here, γ is clockwise-oriented! Therefore, to find the area enclosed by gamma, we need to take the negative of this signed area, which is

$$
\frac{1}{2} \int_{\pi / 3}^{2 \pi / 3} 2 \cos (2 t)+\cos (4 t) d t+\frac{1}{2} \int_{4 \pi / 3}^{5 \pi / 3} 2 \cos (2 t)+\cos (4 t) d t=\ldots=\frac{\sqrt{3}}{4}
$$

Notice that we've used a curve γ here that was piecewise defined: this is completely OK! The only thing you need to check is that the curve is a simple closed one and counterclockwise-oriented: once you've done that, it can be defined however you like.

Summing these three parts gives us that the area enclosed by our curve is $3 \sqrt{3} / 2$.

