Recitation 6: Integration in \mathbb{R}^{n}

Week 6
Caltech 2013

1 Integration in \mathbb{R}^{n}

In the first five weeks of this course, we've introduced topics like limits, derivatives and optimization for functions on \mathbb{R}^{n}; furthermore, whenever we've done so, we've built all of our understanding and tools by looking at the 1-dimensional case, and extending our knowledge of functions on \mathbb{R}^{1} to the study of \mathbb{R}^{n}. Today's lecture, on integration in \mathbb{R}^{n}, will be another class in this format!

In \mathbb{R}^{1}, we had two ways of looking at the definite integral of a function $f(x), \int_{a}^{b} f(x) d x$. One was thinking of the integral as the area under the curve of $f(x)$ from a to b : in other words, the area of the region bounded by the lines $x=a, x=b, y=0$ and the curve $f(x)=y$. Another, which we discussed a bit less, was the idea of the integral as the average of $f(x)$ from a to b, multiplied by the length of the interval $[a, b]$.

How can we "generalize" the integral to something we can calculate for functions f : $\mathbb{R}^{n} \rightarrow \mathbb{R}$? Well: first, we should generalize the concept of an interval $[a, b]$ to a box in \mathbb{R}^{n} : i.e. a region of the form $[a, b] \times[c, d] \times \ldots$ in \mathbb{R}^{n}. If we've done this, then the natural generalization of our "area" concept, at least for functions $\mathbb{R}^{2} \rightarrow \mathbb{R}$, is the idea of volume: i.e. we can define the integral of $f(x, y)$ over some box $[a, b] \times[c, d]$,

$$
\int_{[a, b] \times[c, d]} f(x, y) d A
$$

as simply the volume of the region bounded below by the plane $z=0$, above by the surface $f(x, y)=z$, and with x, y coördinates constrained to the box $[a, b] \times[c, d]$. (The $d A$ in the expression above is a reminder that we're integrating over a 2 -dimensional region, and therefore that the "tiny bits" that we're using to integrate f are 2-dimensional, as opposed to one-dimensional like $d x$ or $d y$.)

Similarly, if we'd rather extend the idea of "averages," we can think of the integral of a function in $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ over some box B as the average value of f over this entire box B, multiplied by the volume of the box B.

We now have a way to think about the integral in \mathbb{R}^{n} ! The next natural thing to want to study, then, is how we'd ever actually go about calculating an integral: specifically, how we can use our past knowledge of integration in \mathbb{R}^{1} to calculate integrals in \mathbb{R}^{n}. For the moment, let's think about functions $f(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$. If we're thinking of the integral in the above "volume" sense, then the following process makes sense as a possible way to calculate the integral in \mathbb{R}^{2} :

- Start with a function $f(x, y)$. We want to find the volume of the region between $z=f(x, y)$ and the plane $z=0$, restricted to the box $[a, b] \times[c, d]$.
- To do this, pick any constant value $\lambda \in[a, b]$, and calculate the one-dimensional integral $\int_{c}^{d} f(\lambda, y) d y$. This is giving you the "area" of various cross-sections of the region we're studying, corresponding to the slices we get by setting x equal to said constant.
- Now, to combine all of these areas into a volume, simply integrate the function that spits out all of these areas, $\int_{c}^{d} f(x, y) d y$ (a function in one variable, x) over the interval $[c, d]$. The result is the average of these areas over the interval $[c, d]$, times the length of $[c, d]$: i.e. it's the volume!

Of course, we can also slice our surface by setting y constant first, and then integrating with respect to y : the picture will be the same. The upshot of all of this is that we can now calculate integrals in \mathbb{R}^{2} using only integrals in \mathbb{R}^{1} : i.e. that

$$
\int_{[a, b] \times[c, d]} f(x, y) d A=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y .
$$

The above concept of the integral as an "average" will give you the exact same conclusion, as well. I generally prefer thinking of the integral as an average \times the area of the thing we're integrating over, if only because it makes certain generalizations easier: i.e. using this concept, it's really easy to see that our above discussion for \mathbb{R}^{2} generalizes completely to \mathbb{R}^{n}. For example, in \mathbb{R}^{3}, we can see that

$$
\int_{[a, b] \times[c, d] \times[e, g]} f(x, y, z) d A=\int_{a}^{b}\left(\int_{c}^{d}\left(\int_{e}^{g} f(x, y, z) d z\right) d y\right) d x .
$$

$2 x$-Simple Regions

As well, if we want to integrate over regions that aren't boxes, this method generalizes beautifully! Let's think about functions $\mathbb{R}^{2} \rightarrow \mathbb{R}$ for the moment. Suppose that we have a region D of the form

$$
D=\left\{(x, y): x \in[a, b], y \in\left[\phi_{1}(x), \phi_{2}(x)\right]\right\} ;
$$

i.e. D looks like

Then, if we want to calculate the integral of $f(x, y)$ over this region D, we'd want to perform the same slicing-into-areas trick as before: i.e. we would want to find the integrals of $f(\lambda, y)$ over $\left[\phi_{1}(\lambda), \phi_{2}(\lambda)\right]$ for every λ, and then we'd want to combine these areas into a volume by integrating with respect to x. In other words, we have

$$
\int_{D} f(x, y) d A=\int_{a}^{b}\left(\int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y\right) d x
$$

We call such regions x-simple, because they are regions that we can define by constraining x simply to an interval and then deriving curves that bound our choices of y. Similarly, a y-simple region D is one of the form

$$
D=\left\{(x, y): y \in[c, d], x \in\left[\psi_{1}(y), \psi_{2}(y)\right]\right\} ;
$$

i.e. where D looks like

We can calculate integrals over a y-simple region just like we did for x-simple regions:

$$
\int_{D} f(x, y) d A=\int_{c}^{d}\left(\int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x, y) d x\right) d y
$$

Sometimes, we can express a region D as both a x-simple and y-simple region! I.e. the upper-left quadrant of the unit circle can be expressed as both

$$
\left.\left\{(x, y): x \in[0,1], y \in\left[0, \sqrt{1-x^{2}}\right)\right]\right\}, \text { and }\left\{(x, y): y \in[0,1], x \in\left[0, \sqrt{1-y^{2}}\right]\right\} .
$$

In regions where we can pull off this "two different descriptions" trick, we can often use these two different descriptions to study integrals that would be otherwise impossible.

3 Change of Variables

Finally, to describe regions that are even more complicated than x-simple or y-simple regions, we have the technique of change of variables. The concept of changing variables is one we've ran into in single-variable calculus:
Theorem 1 (Change of variables, single-variable form) Suppose that f is a continuous function over the interval $(g(a), g(b))$, and that g is a $1-1$ continuous map with continuous derivative from (a, b) to $(g(a), g(b))$. Then, we have that

$$
\int_{g(a)}^{g(b)} f(x) d x=\int_{a}^{b} f(g(x)) \cdot g^{\prime}(x) d x .
$$

The idea here, roughly, was the following: the integral of f over the interval $(g(a), g(b))$ is the same as the integral of $f \circ g$ over the interval (a, b), as long as we correct for how g "distorts space." In other words, on the left (where g 's been applied to the domain (a, b)), we're integrating with respect to $d x$, the change in x : however, on the right, we're now integrating $f \circ g$, and therefore we should integrate with respect to $d(g(x))=g^{\prime}(x) d x$.

So: in multiple variables, we want to have a similar theorem! Basically, given a continuous function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, a domain $R \subset \mathbb{R}^{n}$, and a differentiable map $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, we want a way to relate the integral of f over $g(R)$ and the integral of $f \circ g$ over R.

How can we do this? In other words, how can we correct for how g "distorts space," like we did for our single-variable case? Well: locally, we know that small changes in the vector \mathbf{x} are measured by $D(g(\mathbf{x}))$, the $n \times n$ matrix of partial derivatives of g. Specifically, from Math 1 b , we know that $\operatorname{det}(D(g(\mathbf{x})))$ measures the volume of the image of the unit cube under the map $D(g(\mathbf{x}))$. So, in a sense, this quantity $-\operatorname{det}(D(g(\mathbf{x})))$, the determinant of the Jacobian of g - is telling us how much g is locally inflating or shrinking space at the point \mathbf{x} ! So, we might hope that this is the correct quantity to scale by. As it turns out, it is! Specifically, we have the following theorem:
Theorem 2 (Change of variables, multiple-variable form) Suppose that R is a region in \mathbb{R}^{n}, g is a 1-1 map with continuous partial derivatives that maps R to some region $g(R) \subset \mathbb{R}^{n}$, and that f is a continuous function. Then, we have

$$
\int_{g(R)} f(\mathbf{x}) d V=\int_{R} f(g(\mathbf{x})) \cdot \operatorname{det}(D g(\mathbf{x})) d V
$$

This, as you may have noticed, is not precisely the theorem in your textbook. That theorem reads as follows:

Theorem 3 (Change of variables, multiple-variable form) Suppose that R is a region in \mathbb{R}^{n}, g is a 1-1 map with continuous partial derivatives that maps $g^{-1}(R)$ to R, and that f is a continuous function. Then, we have

$$
\int_{R} f(\mathbf{x}) d V=\int_{g^{-1}(R)} f(g(\mathbf{x})) \cdot \operatorname{det}(D g(\mathbf{x})) d V .
$$

The change between the two theorems lies in how you're thinking of the integral you've started with: you can consider it either as a integral where you've already got a good guess for what your g-map will be $\left(\int_{g(R)} f(\mathbf{x}) d V\right)$, or you can think of it in the situation where you don't have an idea what your g-map is yet $\left(\int_{R} f(\mathbf{x}) d V\right)$.

If you use either of these results, you need to be very very careful to insure that your map g is 1-1 on your region R ! Otherwise, it's possible that g^{-1} will "fold" parts of R on top of each other, in such a way that the integral at the right will no longer be over something that looks like R. For example, if your map g was the map $(x, y) \mapsto\left(x^{2}, y^{2}\right)$, and you were to try applying this map to the integral

$$
\int_{g([-1,1] \times[0,1])} 1 d V,
$$

you'd get

$$
\int_{g([-1,1] \times[0,1])} 1 d V=? ? \int_{[-1,1] \times[0,1]} 1 \cdot \operatorname{det}\left(\begin{array}{cc}
2 x & 0 \\
0 & 2 y
\end{array}\right) d V=\int_{-1}^{1} \int_{0}^{1}(4 x y) d y d x=2
$$

even though

$$
\int_{g([-1,1] \times[0,1])} 1 d V=\int_{[0,1]^{2}} 1 d V=\int_{0}^{1} \int_{0}^{1} d x d y=1
$$

This is because the map g "folds" the region $[-1,1] \times[0,1]$ we were integrating over in half: therefore, if we use change of variables to change the region we're integrating over from $g([-1,1] \times[0,1])$ to $[-1,1] \times[0,1]$, we'd expect to see an "unfolding", which would cause our integral to double. (Which is precisely what we saw!)

4 Common variable changes.

There are three very common changes of variable, which we review here briefly:
Theorem 4 (Change of variables, polar:) Let $\gamma:[0, \infty) \times[0,2 \pi)$ be the polar coördinates map $(r, \theta) \mapsto(r \cos (\theta), r \sin (\theta))$. Then $D(\gamma(r, \theta))=\left[\begin{array}{cc}\cos (\theta) & -r \sin (\theta) \\ \sin (\theta) & r \cos (\theta)\end{array}\right]$, $\operatorname{det}(D(\gamma(r, \theta)))=$ r, and we have

$$
\int_{\gamma(R)} f(x, y) d V=\int_{R} f(r \cos (\theta), r \sin (\theta)) \cdot r d V
$$

for any region $R \subset[0, \infty) \times[0,2 \pi)$, and any continuous function f on an open neigborhood of R.

In other words, if we have a region R described by polar coördinates, we can say that the integral of f over $\gamma(R)$ is just the integral of $r \cdot f(r \cos (\theta), r \sin (\theta))$ over this region interpreted in Euclidean coördinates. For example, suppose that R was the unit disk, which we can express using our polar coördinates map as $\gamma([0,1] \times[0,2 \pi))$. Then, change of variables tells us that the integral of f over the unit disk is just the integral of $r \cdot f(r \cos (\theta), r \sin (\theta))$ over the Euclidean-coördinates rectangle $[0,1] \times[0,2 \pi)$.

Cylindrical coördinates are similar:
Theorem 5 (Change of variables, cylindrical:) Let $\gamma:[0, \infty) \times[0,2 \pi) \times \mathbb{R}$ be the cylindrical coördinates $\operatorname{map}(r, \theta, z) \mapsto(r \cos (\theta), r \sin (\theta), z)$. Then $D(\gamma(r, \theta))=\left[\begin{array}{ccc}\cos (\theta) & -r \sin (\theta) & 0 \\ \sin (\theta) & r \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]$, $\operatorname{det}(D(\gamma(r, \theta)))=r$, and we have

$$
\int_{\gamma(R)} f(x, y) d V=\int_{R} f(r \cos (\theta), r \sin (\theta), z) \cdot r d V
$$

for any region $R \subset[0, \infty) \times[0,2 \pi) \times(-\infty, \infty)$, and any continuous function f on an open neigborhood of R.

Spherical coördinates are a bit trickier, but have a similar form:
Theorem 6 (Change of variables, spherical:) Let $\gamma:[0, \infty) \times[0, \pi) \times[0,2 \pi)$ be the cylindrical coördinates map $(r, \varphi, \theta) \mapsto(r \cos (\varphi), r \sin (\varphi) \cos (\theta), r \sin (\varphi) \sin (\theta))$. Then $D(\gamma(r, \theta))=$ $\left[\begin{array}{ccc}\cos (\varphi) & -r \sin (\varphi) & 0 \\ \sin (\varphi) \cos (\theta) & r \cos (\varphi) \cos (\theta) & -r \sin (\varphi) \sin (\theta) \\ \sin (\varphi) \sin (\theta) & r \cos (\varphi) \sin (\theta) & r \sin (\varphi) \cos (\theta)\end{array}\right], \operatorname{det}(D(\gamma(r, \theta)))=r^{2} \sin (\varphi)$, and we have

$$
\int_{\gamma(R)} f(x, y) d V=\int_{R} f(r \cos (\varphi), r \sin (\varphi) \cos (\theta), r \sin (\varphi) \sin (\theta)) \cdot r^{2} \sin (\varphi) d V
$$

for any region $R \subset[0, \infty) \times[0, \pi) \times[0,2 \pi)$ and any continuous function f on an open neigborhood of R.

There are a few other coördinate transforms that will often come up:

- Various translations of space: i.e. maps $(x, y, z) \mapsto\left(x+c_{1}, y+c_{2}, z+c_{3}\right)$. The determinant of the Jacobian of such maps will always be 1 .
- Various ways to scale space: i.e. maps $(x, y) \mapsto\left(\lambda_{1} x, \lambda_{2} y\right)$. The determinant of the Jacobian of such maps will be the product of these scaling constants $\lambda_{1} \cdot \ldots \cdot \lambda_{n}$.
- Various compositions of these maps: i.e. a translation map, followed by a spherical coördinates map, followed by a scaling map. Using the chain rule, the determinant of the Jacobian of any such composition of maps is just the product of the determinants of the individual Jacobians.

5 Examples

Next week, we'll have many more examples of these techniques. For now, however, here's three worked examples to give you an idea of how integrals work in \mathbb{R}^{n}.

Question 7 Choose two random numbers from $[0,1]$. What is the average value of the smaller of the two? In other words, what is the integral (average value)

$$
\frac{1}{\operatorname{Area}\left([0,1]^{2}\right)} \cdot \iint_{[0,1] \times[0,1]} \min (x, y) d A \quad ?
$$

Solution. First: notice that the area of $[0,1]^{2}$ is just 1 , so $\frac{1}{\operatorname{Area}\left([0,1]^{2}\right)}$ is just 1 . So we can just study the integral!

Using our discussion above, start by expressing this integral as two nested one-dimensional integrals:

$$
\iint_{[0,1] \times[0,1]} \min (x, y) d A=\int_{0}^{1}\left(\int_{0}^{1} \min (x, y) d x\right) d y
$$

With this done, let's study the inner integral. Directly working with the function $\min (x, y)$ seems difficult. However, for a given fixed value of y, notice that we can split our integral into two parts (the integral from 0 to y and the integral from y to 1):

$$
\int_{0}^{1} \min (x, y) d x=\int_{0}^{y} \min (x, y) d x+\int_{y}^{1} \min (x, y) d x
$$

Then, if we notice that $\min (x, y)$ is just x whenever $x \leq y$ (i.e. x is in our first part) and is just y whenever $x \geq y$ (i.e. x is in our second part), we can replace the complicated $\min (x, y)$'s with just x and y : i.e.

$$
\begin{aligned}
\int_{0}^{1} \min (x, y) d x & =\int_{0}^{y} \min (x, y) d x+\int_{y}^{1} \min (x, y) d x \\
& =\int_{0}^{y} x d x+\int_{y}^{1} y d x \\
& =\left.\frac{x^{2}}{2}\right|_{0} ^{y}+\left.x y\right|_{y} ^{1} \\
& =\frac{y^{2}}{2}+y-y^{2} \\
& =y-\frac{y^{2}}{2} .
\end{aligned}
$$

Therefore, if we plug this into our nested integrals, we have that

$$
\begin{aligned}
\iint_{[0,1] \times[0,1]} \min (x, y) d A & =\int_{0}^{1} \int_{0}^{1} \min (x, y) d x d y \\
& =\int_{0}^{1}\left(y-\frac{y^{2}}{2}\right) d y \\
& =\frac{y^{2}}{2}-\left.\frac{y^{3}}{6}\right|_{0} ^{1} \\
& =\frac{1}{3}
\end{aligned}
$$

So, if you take two random numbers in $[0,1]$ and look at the smaller of the two, the average value you'd see is $1 / 3$.

Question 8 Now, choose two random positive numbers so that their sum is between 0 and 1. What is the average value of the smaller of the two?

Solution. Similarly to before, we want to integrate $\min (x, y)$ over some region: however, our region is now

$$
D=\{(x, y): 0 \leq x, 0 \leq y, x+y \leq 1\}=\{(x, y): y \in[0,1], x \in[0,1-y]\} .
$$

We can use this description of D to notice that it's a right triangle, with sides given by the lines $x=0, y=0, x+y=1$. So its area is just $\frac{1}{2}$, so $\frac{1}{\operatorname{Area}(D)}=2$.

Now, again using this description of D, we can express our integral as the following expression:

$$
2 \cdot \iint_{[0,1] \times[0,1]} \min (x, y) d A=\int_{0}^{1}\left(\int_{0}^{1-y} \min (x, y) d x\right) d y
$$

With this done, let's study the inner integral. It's now a bit more complicated! In specific, notice that if we have $y \geq \frac{1}{2}$, because $x \in[0,1-y]$, we will always have $x<y$: i.e. $\min (x, y)=x$. So, for $y \geq \frac{1}{2}$, we have

$$
\int_{0}^{1-y} \min (x, y) d x=\int_{0}^{1-y} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{1-y}=\frac{(1-y)^{2}}{2}=\frac{y^{2}-2 y+1}{2}
$$

However, if $y \leq \frac{1}{2}$, it's possible that $x>y$ or $x<y$, and we are led to perform the same trick as before of splitting our integral into two pieces, one from 0 to y and the other from
y to $1-y$:

$$
\begin{aligned}
\int_{0}^{1-y} \min (x, y) d x & =\int_{0}^{y} \min (x, y) d x+\int_{y}^{1-y} \min (x, y) d x \\
& =\int_{0}^{y} x d x+\int_{y}^{1-y} y d x \\
& =\left.\frac{x^{2}}{2}\right|_{0} ^{y}+\left.x y\right|_{y} ^{1-y} \\
& =\frac{y^{2}}{2}+\left(y-y^{2}\right)-y^{2} \\
& =y-\frac{3 y^{2}}{2} .
\end{aligned}
$$

Therefore, if we plug these results into our nested integrals, we get that

$$
\begin{aligned}
2 \cdot \iint_{[0,1] \times[0,1]} \min (x, y) d A & =2 \cdot \int_{0}^{1} \int_{0}^{1} \min (x, y) d x d y \\
& =2 \cdot\left(\int_{0}^{1 / 2}\left(y-\frac{3 y^{2}}{2}\right) d y+\int_{1 / 2}^{1}\left(\frac{y^{2}-2 y+1}{2}\right) d y\right) \\
& =2 \cdot\left(\left.\left(\frac{y^{2}}{2}-\frac{y^{3}}{2}\right)\right|_{0} ^{1 / 2}+\left.\left(\frac{y^{3}}{6}-\frac{y^{2}}{2}+\frac{y}{2}\right)\right|_{1 / 2} ^{1}\right) \\
& =2 \cdot\left(\left(\frac{1}{8}-\frac{1}{16}\right)-0+\left(\frac{1}{6}-\frac{1}{2}+\frac{1}{2}\right)-\left(\frac{1}{48}-\frac{1}{8}+\frac{1}{4}\right)\right) \\
& =\frac{1}{6}
\end{aligned}
$$

Therefore, if you take two random positive numbers such that their sum is ≤ 1 and you look at the smaller of the two, you'll get $\frac{1}{6}$ on average.

Question 9 Choose a random point in the upper-right quadrant of the unit disk: i.e. a random point (x, y) such that $x, y \geq 0, x^{2}+y^{2} \leq 1$. What is the average value of the minimum of (x, y) ?

Solution. We are looking for the average value of the function $\min (x, y)$ over this upperright quadrant of the unit disk, i.e.

$$
\frac{1}{\text { area(part of unit disk) }} \int_{\text {(part of unit disk) }} \min (x, y) d A .
$$

Polar coördinates look like a good candidate for how we can find this integral! In particular, if we apply the change of variables formula using the polar coördinate transform
$g(r, \theta)=(r \cos (\theta), r \sin (\theta))$ to the above integral, we get

$$
\begin{aligned}
\int_{\text {(part of unit disk) }} \min (x, y) d A & =\int_{0}^{1} \int_{0}^{\pi / 2} \min (r \cos (\theta), r \sin (\theta)) \cdot \operatorname{det}(D g) \cdot d \theta d r \\
& =\int_{0}^{1} \int_{0}^{\pi / 2} \min (r \cos (\theta), r \sin (\theta)) \cdot r \cdot d \theta d r
\end{aligned}
$$

Note that we can do because the polar-coördinate transform is $1-1$ on the set $[0,1] \times[0, \pi / 2]$, which is precisely the set that maps onto the upper-right quadrant of the unit disk.

With this done, we can simply integrate. First, notice that from 0 to $\pi / 4, \sin (\theta) \leq$ $\cos (\theta)$, and from $\pi / 4$ to π, we have that $\cos (\theta) \leq \sin (\theta)$. Therefore, if we break our inner integral into two parts, one going from 0 to $\pi / 4$ and the other from $\pi / 4$ to $\pi / 2$, we have

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{\pi / 2} r \min (r \cos (\theta), r \sin (\theta)) d \theta d r \\
= & \int_{0}^{1}\left(\int_{0}^{\pi / 4} r \min (r \cos (\theta), r \sin (\theta)) d \theta+\int_{\pi / 4}^{\pi / 2} r \min (r \cos (\theta), r \sin (\theta)) d \theta\right) d r \\
= & \int_{0}^{1}\left(\int_{0}^{\pi / 4} r^{2} \sin (\theta) d \theta+\int_{\pi / 4}^{\pi / 2} r^{2} \cos (\theta) d \theta\right) d r \\
= & \int_{0}^{1}\left(\left.r^{2}(-\cos (\theta))\right|_{0} ^{\pi / 4}+\left.r^{2}(\sin (\theta))\right|_{\pi / 4} ^{\pi / 2}\right) d r \\
= & \int_{0}^{1} r^{2}\left(1-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}+1\right) d r \\
= & \left.(2-\sqrt{2}) \frac{r^{3}}{3}\right|_{0} ^{1} \\
= & \frac{2-\sqrt{2}}{3} .
\end{aligned}
$$

Therefore, if we want the average value of $\min (x, y)$ over this upper-right quadrant, we just have to divide our integral by the area of the upper-right quadrant, $\pi / 4$. In other words, we've just proven that the average value of $\min (x, y)$ is

$$
\frac{8-4 \sqrt{2}}{3 \pi},
$$

which is roughly $\frac{1}{4}$.

