
Math 1c TA: Padraic Bartlett

Recitation 4: Arc Length; Div, Grad, and Curl

Week 4 Caltech 2013

Our recitation today is centered around two fairly different things: the formula for arc
length, and the concepts of divergence, gradients, and curl. We study each separately below.

1 Arc Length

We open with some theoretical discussion for how you might go about deriving the formula
for arc length. If this isn’t what you care about, feel free to skip forward to the part where
we actually use this formula in a page or so.

Recall, from earlier in class, the definition of a path in Rn:

Definition. A path is simply a function γ : [a, b]→ Rn, from some interval [a, b] to Rn.

The graph of a path over its entire input interval [a, b] is some sort of curve in n-dimensional
space. A natural question to ask, given a path, is what the length of this path is in Rn!

A particularly useless answer to this question is the following integral:

arc length(γ) =

∫
γ
ds,

where ds denotes the signed length of “tiny” portions of the curve we’re integrating over
(formally, the “differential” formed by infinitesimally small pieces of our curve), and where
our region of integration is precisely the graph of γ. In other words, if we add up the length
of tiny pieces of the curve over the entire curve, we should, um, get the length of the whole
curve.

This formula, like many things in mathematics without proper context, is completely
true but also completely useless. I.e. what we want to know is how to actually perform
such a calculation – i.e. how to turn this integral into something we can actually find, and
that isn’t just symbolic nonsense.

This, however, we can do! – and furthermore, can do by examining our definitions, and
thereby turn this symbolic expression into something that’s actually useful. Specifically: we
want to take our integral over γ of these little ds-bits, and turn it into something over [a, b]
(because we understand how to integrate over intervals in R — this is just single-variable
calculus!) To do this, we just need to express these little bits of length ds as something
with respect to dt (where dt denotes a little bit of change in the inputs from [a, b] to γ(t).

So: a little bit of change in t produces a little bit of change dγ1
dt dt in the x1-coordinate,

and a little bit of change dγ2
dt dt in the x2-coordinate, and more generally a little bit of change

dγk
dt in every coordinate xk of our space. Therefore, because we can express the little changes

in our curve, ds, as just the square root of the squared changes in our curve in all of these
directions, we can rewrite our integral as the following expression:

arc length(γ) =

∫ b

a

√(
dγ1
dt

)
+

(
dγ2
dt

)
+ . . .+

(
dγn
dt

)
dt.
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As an example of this formula, consider the following example:

Example. Find the length of the helix γ(t) = (cos(t), sin(t), t), where we let t range over
∈ [0, 6π].

Solution. Because it’s pretty, we sketch this curve here:

Ok! Now, with that done, we just simply apply our above definition:

∫
γ
ds =

∫ 6π

0

√(
dγ1
dt

)2

+

(
dγ2
dt

)2

+

(
dγ3
dt

)2

dt

=

∫ 6π

0

√
(− sin(t))2 + (cos(t))2 + 12 dt

=

∫ 6π

0

√
sin2(t) + cos2(t) + 1 dt

=

∫ 6π

0

√
2 dt

= 6π
√

2.

2 Div, Grad, and Curl

The other focus of this class was the twin definitions of div and curl, which we quickly
review here:

1. Div and curl: definitions. Given a C1 vector field F : R3 → R3, we can defind the
divergence and curl of F as follows:
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• Divergence. The divergence of F , often denoted either as div(F ) or ∇ · F , is
the following function R3 → R:

div(F ) = ∇ · F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
.

• Curl. The curl of F , denoted curl(F ) or ∇×F , is the following map R3 → R3:

curl(F ) = ∇× F =

((
∂F3

∂y
− ∂F2

∂z

)
,

(
∂F1

∂z
− ∂F3

∂x

)
,

(
∂F2

∂x
− ∂F1

∂y

))
.

Often, the curl is written as the “determinant” of the following matrix:

det


i j k

∂
∂x

∂
∂y

∂
∂z

F1 F2 F3


Given a function F : R2 → R2, we can also find its curl by “extending” it to a function
F ? : R3 → R3, where F ?1 (x, y, z) = F (x, y), F ?2 (x, y, z) = F (x, y), and F ?3 (x, y, z) = 0.
If someone asks you to find the curl of a function that’s going from R2 → R2, this is
what they mean.

Also, divergence naturally generalizes to working on any function Rn → Rn; just take
the sum of ∂Fi

∂xi
over all of the variables the function depends on.

The divergence of a vector field at a point, physically speaking, can be interpreted
as the net “flow” of our vector field through this point; i.e. kind-of the extent to which
there is a net positive or negative amount of flow through our surface at this point.
In other words, take a vector field on some space, and imagine drawing a tiny box
around some point in our space. The divergence at that point is approximately the
net flow through this tiny box. So, if you have a vector field that is modeling some
sort of incompressible fluid (like, say, water), you would expect that the divergence at
every point in your flow is 0: this is because an incompressible fluid locally has to have
as much fluid going into each point as goes out (otherwise, you’d have compression or
decompression.)

This isn’t necessarily obvious from the definition of divergence at the moment; later
in the class, however, when we prove the divergence theorem, this will make more
sense.

The curl of a vector field also has a physical interpretation. Take a vector field on
R3, and imagine that it is describing some sort of a fluid’s motion. Take a point in
R3, and fix some small ball at that point in space. Suppose that this ball has a ridged
or rough outer surface; then, when our fluid flows past it, the fluid will catch on these
rough outer parts and cause the ball to rotate.
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The curl measures how this rotation works. Specifically, in any fixed vector field that
corresponds to a flow, this ball will have some sort of fixed axis around which this
rotation occurs. This axis is precisely the curl of the vector field at that point. The
direction of this rotation is determined by the right-hand-rule, and the magnitude of
this rotation is precisely half of the magnitude of the curl.

In particular, suppose we’re calculating a curl of a vector field on R2, using the method
we talked about above to extend the curl to R2. Visualize your vector field F as a
depiction for how water is flowing on the surface of a pool, say. To visualize the curl,
imagine placing a rubber ducky at some point in your pool. The axis of rotation of
the duck will be

curl(F ) =

((
∂F3

∂y
− ∂F2

∂z

)
,

(
∂F1

∂z
− ∂F3

∂x

)
,

(
∂F2

∂x
− ∂F1

∂y

))
=

(
0− 0, 0− 0,

(
∂F2

∂x
− ∂F1

∂y

))
=

(
0, 0,

(
∂F2

∂x
− ∂F1

∂y

))
.

We can see this by using the fact that F , because it’s a vector field on R2, neither
depends on z (so the ∂

∂z ’s are all 0) nor has a z-component (so the ∂F3’s are all 0).
So, in other words, our duck will rotate along the z-axis (which makes sense), with

rotation and speed determined by
(
∂F2
∂x −

∂F1
∂y

)
.

2. Theorems. We have a pair of rather useful theorems about the divergence and curl
of functions, which we state here:

• For any C2 function F , div(curl(F )) is always 0.

• For any C2 function F , curl(grad(F )) is always 0.

These theorems are a pair of very useful tests that can often tell us that a given
function F is not a conservative vector field (i.e. a gradient) or a curl of some other
function. For example, if we examined the function F (x, y, z) = (x, y, z), we can
immediately tell that F is not the curl of some other function, because its divergence
is 1 + 1 + 1 6= 0. Similarly, we can see that V (x, y, z) = (xy, yz, xz) cannot be
described as the gradient ∇(f) of some other function f : R3 → R, because its curl is
(−y,−z,−x), which is not equal to (0, 0, 0).
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