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1 Higher-Order Derivatives and their Applications

Another thing we could want to do with the derivative, motivated by what we were able to
do in R1, is the concept of higher-order derivatives. These are relatively easy to define
for partial derivatives:

Definition. Given a function f : Rn → R, we can define its second-order partial deriva-
tives as the following:

∂2f

∂xi∂xj
=

∂

∂xi

(
∂f

∂xj

)
.

In other words, the second-order partial derivatives are simply all of the functions you can
get by taking two consecutive partial derivatives of your function f .

A useful theorem for calculating these partial derivatives is the following:

Theorem 1 A function f : Rn → R is called C2 at some point if all of its second-order
partial derivatives are continuous at that point. If a function is C2, then the order in which
second-order partial derivatives are calculated doesn’t matter: i.e.

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
,

for any i, j.

It bears noting that if the conditions of this theorem are not met, then the order for
computing second-order partial derivatives may actually matter! One such example is the
function

f(x, y) =

{
x3y−xy3
x2+y2

, (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

At (0, 0), you can calculate that ∂2f
∂x∂y = 1 6= −1 = ∂2f

∂y∂x : a result that occurs because the
second-order partials of this function are not continuous.

However, the interesting aspects of higher-order partial derivatives are not really in
their calculation; rather, the applications of higher-order partial derivatives are the things
worth studying. In R, for example, we could turn the second derivative of a function into
a lot of information about that function: in particular, we could use this second derivative
to determine

• whether a given critical point was a local minima or maxima,
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• whether a function is concave up or down at a given point,

• and what the second-order Taylor approximation to that function was at a point.

Can we do the same for functions from Rn to R? As it turns out, the answer is yes! The
tool with which we do this is called the Hessian, which we define here:

Definition. The Hessian of a function f : Rn → R at some point a is the following matrix:

H(f)
∣∣
a

=


∂2f

∂x1∂x1
(a) . . . ∂2f

∂x1∂xn
(a)

...
. . .

...
∂2f

∂xn∂x1
(a) . . . ∂2f

∂xn∂xn
(a)

 .
The main useful property of the Hessian is the following:

Theorem 2 Let f : Rn → R be a function with well-defined second-order partials at some
point a. Using the Hessian of f , construct the following function: H(x) = 1

2 · (x1, . . . xn) ·
H(f)

∣∣
a
· (x1, . . . xn)T . Pick any two co ordinates xi, xj in Rn: then

∂2f

∂xi∂xj
(a) =

∂2H

∂hi∂hj
.

In other words, H’s second-order partial derivative are precisely the second-order partial
derivatives of f at a! So H is basically a function designed to have the same second-order
partials as f at a.

One quick thing this theorem suggests is that we could use H(f)
∣∣
a

to create a “second-
order” approximation to f at a, in a similar fashion to how we used the derivative to create
a linear (i.e. first-order) approximation to f . We define this below:

Theorem 3 If f : Rn → R is a function with continuous second-order partials, we define
the second-order Taylor approximation to f at a as the function

T2(f)
∣∣
a
(a + h) = f(a) + (∇f)(a) · h +

1

2
· (h1, . . . hn) ·H(f)

∣∣
a
· (h1, . . . hn)T .

You can think of f(a) as the constant, or zero-th order part, (∇f)(a) · h as the linear part,
and H(f)

∣∣
a
(h) as the second-order part of this approximation.

To illustrate how this process actually creates a pretty decent approximation to f , we
calculate an example:

Example. Calculate the second-order Taylor approximation to the function f(x, y) = exy

at the origin.

Answer. Calculating the second derivatives of f is pretty straightforward:

∂f

∂x
= yexy,

∂f

∂y
= xexy

∂2f

∂x2
= y2exy,

∂2f

∂y2
= x2exy,

∂2f

∂x∂y
= xyexy + exy =

∂2f

∂y∂x
.
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If we evaluate these partials at 0 and plug them into the definition above for T2(f)
∣∣
(0,0)

,
we get

T2(f)
∣∣
(0,0)

((0, 0) + (h1, h2)) = f(0, 0) + (∇f)(0, 0) · (h1, h2) +H(f)
∣∣
(0,0)

(h1, h2)

= 1 + (0, 0) · (h1, h2) +
1

2
(h1, h2)

(
0 1
1 0

)(
h1
h2

)
= 1 +

1

2
(h1, h2)

(
h2
h1

)
= 1 +

1

2
(2h1h2)

= 1 + h1h2.

So, at the origin, the second-order Taylor approximation for f is just T2(f)(x, y) = 1 + xy.
The following graph, with exy in solid red and T2 in dashed blue, shows that it’s actually a
somewhat decent approximation at (0, 0):

z

x

y

As well, we can use the second derivatives to search for and find local minima and
maxima! We define these terms here:

Definition. A point a ∈ Rn is called a local maxima of a function f : Rn → R iff there is
some small value r such that for any point x in Ba(r) not equal to a, we have f(x) ≤ f(a).

A similar definition holds for local minima.

So: how can we use the derivative to find such local maxima? Well, it’s clear that (if
our function is differentiable in a neighborhood around this point) that no matter how we
move to leave this point, our function must not increase – in other words, for any direction
v ∈ Rn, the directional derivative f ′(a,v) must be ≤ 0. But this means that in fact all of
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the directional derivatives must be equal to 0!, because if f ′(a,v) was < 0, then f ′(a,−v)
would be > 0.

This motivates the following definitions, and basically proves the following theorem:

Definition. A point a is called a stationary point of some function f : Rn → R iff ∇(f)
∣∣∣
a

=

(0, . . . , 0). A point a is called a critical point if it is a stationary point, or f is not
differentiable in any neighborhood of a.

Theorem 4 A function f : Rn → R attains its local maxima and minima only at critical
points.

However, it bears noting that not every critical or stationary point is a local maxima
or minima! A trivial example would be the function f(x, y) = x2 − y2: the origin is a
stationary point, yet neither a local minima or maxima (as f(0, ε) < 0 < f(ε, 0), and thus
there are positive and negative values of f attained in any ball around the origin, where it
is 0.)

How can we tell which stationary points do what? Well, in one-variable calculus, we
used the idea of the “second derivative” to determine what was going on! In specific, we
knew that if the second derivative of a function f at some point a was negative, then tiny
increases in our variable at that point would cause the first derivative to decrease, and tiny
decreases in our variable at that point would cause the negative of the first derivative to
increase – i.e. cause the first derivative to decrease, and therefore make the function itself
decrease! Therefore, the second derivative being negative at a stationary point implied that
that point was a local maxima.

In higher dimensions, things are tricker – at a given point a, we no longer have this
idea of a “single” second derivative, but instead have many different second derivatives, like
∂2f
∂x∂y (a) and ∂2f

∂z2
(a). Yet, we can still use the same ideas as before to figure out what’s going

on!
In particular, in one dimension, we said that we wanted tiny positive changes of our

variables to make the first functions decrease. In other words, given any of the partials ∂f
∂xi

,
we want any positive changes in the direction of this partial to make our function decrease
– i.e. we want the directional derivative of ∂f

∂xi
to be negative in any direction v, where all

of the coördinates of v are positive. (Positivity here stems from the same reason that in
one dimension, we have that the first derivative is increasing for all of the points to the left
of a maxima and decreasing for all of the points to the right of a maxima.)

So: this condition, if we write it out, is just asking that for every i and nonzero v, that(
∂2f

∂x1∂xi
(a),

∂2f

∂x2∂xi
(a), . . .

∂2f

∂xn∂xi
(a)

)
· (v21, v22, . . . v2n)

is negative. If you choose to write this out as a matrix, this actually becomes the claim
that for any v 6= 0, we have

vT ·


∂2f

∂x1∂x1
(a) . . . ∂2f

∂x1∂xn
(a)

...
. . .

...
∂2f

∂xn∂x1
(a) . . . ∂2f

∂xn∂xn
(a)

 · v < 0.
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linear algebra, you may hopefully remember that any matrix satisfying this condition is
called being negative-definite, and is equivalent to having all n of your eigenvalues existing
and being negative. Similarly, if we were looking for a local minima, we would be asking
that the above matrix product is always positive: i.e. that the matrix is positive-definite,
which is equivalent to all of its eigenvalues being positive.

But we’ve seen this construction before! In particular, this matrix thing above is just the
Hessian! Based on these observations, we make the following definitions and observations:

Definition. The Hessian H(f)
∣∣
a

is positive-definite if and only if the matrix
∂2f

∂x1∂x1
(a) . . . ∂2f

∂x1∂xn
(a)

...
. . .

...
∂2f

∂xn∂x1
(a) . . . ∂2f

∂xn∂xn
(a)


is positive-definite. (The same relation holds for being negative-definite.)

Recall from Math 1a that a matrix is positive-definite if and only if all of its eigenvalues
are real and positive. Similarly, a matrix is negative-definite if and only if all of its eigen-
values are real and negative. If some of a matrix’s eigenvalues are 0, some are negative and
others are positive, or if there are less real eigenvalues than the rank of the matrix (i.e. some
eigenvalues are complex,) then the matrix is neither positive-definite or negative-definite.

Note also that because the Hessian is symmetric whenever the mixed partials of our
function are equal, and symmetric matrices have only real eigenvalues, you really should
never get complex-valued eigenvalues.

Theorem 5 A function f : Rn → R has a local maxima at a stationary point a if all of its
second-order partials exist and are continuous in a neighborhood of a, and the Hesssian of f
is negative-definite at a. Similarly, it has a local minima if the Hessian is positive-definite
at a. If the Hessian takes on both positive and negative values there, it’s a saddle point:
there are directions you can travel where your function increase, and others where it will
decrease. Finally, if the Hessian is identically 0, you have no information as to what your
function may be up to: you could be in any of the three above cases.

A quick example, to illustrate how this gets used:

Example. For f(x, y) = x2 + y2, g(x, y) = −x2 − y2, and h(x, y) = x2 − y2, find local
minima and maxima.

Solution. First, by taking partials, it is clear that the only point at which the gradient of
these functions is (0, 0) is the origin. There, we have that

H(f)
∣∣∣
(0,0)

=

[
2 0
0 2

]
, H(g)

∣∣∣
(0,0)

=

[
−2 0
0 −2

]
, H(h)

∣∣∣
(0,0)

=

[
2 0
0 −2

]
,

and thus that f is positive-definite at (0,0), g is negative-definite at (0,0), and h is neither
at (0,0) by examining the eigenvalues. Thus f has a local minima at (0, 0), g has a local
maxima at (0,0), and h has a saddle point at (0,0).
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2 Lagrange Multipliers

2.1 Statement of the method.

In the section above, we talked about how to use derivatives to find and classify the critical
points of functions Rn → R. This allows us to find the global minima and maxima of
functions over all of Rn, if we want! Often, however, we won’t just be looking to find the
maximum of some function on all of Rn: sometimes, we’ll want to maximize a function given
a set of constraints. For example, we might want to maximize the function f(x, y, z) = x+y
subject to the constraint that we’re looking at points where x2 + y2 = 1. How can we do
this?

Initially, you might be tempted to just try to use our earlier methods: i.e. look for
places where Df is 0, and try to classify these extrema. The problem with this method,
when we have a set of constraints, is that it usually won’t find the maxima or minima on
this constraint: because it’s only looking for local maxima or minima over all of Rn, it will
ignore points that could be maxima or minima on our constrained surface! I.e. for the f, g
we mentioned above, we know that ∇(f) = (1, 1), which is never 0; however, we can easily
see by graphing that f(x, y) = x+ y should have a maximum value on the set x2 + y2 = 1,
specifically at x = y = 1√

2
.

So: how can we find these maxima and minima in general? The answer is the method
of Lagrange multipliers, which we outline here:

Proposition 6 Suppose that f : Rn → R is a function whose extremal values {x} we
would like to find, given the constraints g(x) = c, for some constraining function g(x).
Then, we have the following result: if a is an extremal value of f restricted to the set
S = {x : ∀i, g(x) = c}, then either one of ∇(f)

∣∣
a

is 0, doesn’t exist, or there is some
constant λ such that

∇(f)
∣∣
a

= λ∇(g)
∣∣
a
.

Why? In this case, it’s worth talking a little bit about why this result happens to
work, as understanding the proof of the above proposition is remarkably useful for using it.
Consider, again, the example we discussed earlier, where we have

f(x, y) = x+ y ← (the function we would like to maximize),

g(x, y) = x2 + y2 = 1 ← (our constraining function).

Let

S = {(x, y) : g(x, y) = 1}.

In this notation, we are looking to maximize the function f restricted to the set S, which
we denote f

∣∣
S

. What do we know about f
∣∣
S

? Well: if a ∈ S is a maximum, we would

expect a to be a “critical point” of f
∣∣
S

. The only issue is that we don’t have any way to

easily refer to just f
∣∣
S

: we can talk about f in general, but if we don’t restrict it to S we
wouldn’t expect a to still be a maximum.

One way around this is to think about paths. Specifically, pick any path γ such that
γ’s image is constained entirely within S, and γ(0) = a. Then, if we look at f ◦ γ, we know
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that this is a function from R→ R; therefore, if f
∣∣
S

has a maximum at a, f ◦ γ also must
have a maximum, as it’s just a path contained entirely in S that goes through this supposed
maximum point a.

In other words, we have

∇(f ◦ γ)
∣∣
t=0

= 0

⇒ ∇(f)
∣∣
a
· γ′(0) = 0;

i.e. ∇(f)
∣∣
a

is orthogonal to γ′(0), for any path γ in S, going through 0. But these γ′(0)’s

are just all of the possible tangent vectors to S at a: so we have that ∇(f)
∣∣
a

is orthogonal
to all of these tangent vectors!

Similarly, we know that for any such path γ, we have that g ◦ γ is constant, because g
is constant on S. But this means that (because the derivative of any constant is 0)

∇(g ◦ γ)
∣∣
t=0

= 0

⇒ ∇(g)
∣∣
a
· γ′(0) = 0.

In other words, ∇(g)
∣∣
a

is also orthogonal to all of S’s tangent vectors at a!

y

x

T(S) = 

	∇(f)=  

But S is a space formed by placing one constraint on a function of n variables: in other
words, it’s a n − 1-dimensional space! Therefore, at the point a, the collection of tangent
vectors to S at a is a n − 1-dimensional space, contained in Rn. But this means that the
space of all vectors orthogonal to this (n − 1)-dimensional space is a 1-dimensional space!
In specific, we’ve just shown that both ∇(f)

∣∣
a

and ∇(g)
∣∣
a

are contained in the same 1-
dimensional space: i.e. that one of them is a multiple of the other! In other words, we’ve
shown that because they’re both orthogonal to the entire tangent space to S at a, there is
some λ such that

∇(f)
∣∣
a

= λ∇(g)
∣∣
a

(Or one of them is 0, or undefined.)
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In the very specific case we’re working with where

f(x, y) = x+ y, g(x, y) = x2 + y2 = 1,

we have

∇(f(x, y)) = (1, 1),∇(g(x, y)) = (2x, 2y)

and we’re looking for points where either of these gradients are 0, or where there is some λ
such that

∇(f(x, y)) = (1, 1) = λ · ∇(g(x, y)) = (2λx, λy)

⇒1 = 2λx, 1 = 2λy

⇒ 1

2λ
= x,

1

2λ
= y

⇒x = y.

So: we have either (0, 0), as this forces (2x, 2y) = (0, 0), or points (x, y) where x = y.
The first is impossible if we’re looking at points where g(x, y) = x2 +y2 = 1; for the second,
we would have x2 + x2 = 1, i.e .x = y = ± 1√

2
.

We’ve therefore discovered the two possible extremal points of f :
(

1√
2
, 1√

2

)
,
(
− 1√

2
,− 1√

2

)
.

In other words, we know that these points are the possible local maxima and minima of f .
How do we tell whether these points are actually global minima and maxima? The answer
is in the following brief definitions and theorem:

Definition. A set S ⊂ Rn is called closed if it contains all of its limit points: i.e. if
{xn}∞n=1 ⊂ S,, and limn→∞ xn = L, then L ∈ S.

Definition. A set S ⊂ Rn is called bounded if there is some M such that ||x|| < M , for
every x ∈ S.

Lemma 7 If g : Rn → R is a continuous function and c is any constant, then the set
S = {x : g(x) = c} is closed.

Theorem 8 If f is a continuous function and we restrict f to a closed and bounded set S,
then f

∣∣
S

will hit its global minima and maxima on S, and furthermore do this at critical

points: i.e. places where D(f
∣∣
S

) is 0.

Corollary 9 Suppose that f : Rn → R is some function we want to maximize/minimize,
g : Rn → R is some constraint function, S is the constrained set {x : g(x) = c}, and S is a
bounded set. Then the absolute maxima and minima of g can all be found via the method
of Lagrange multipliers: i.e. the maxima and minima of f

∣∣
S

will come up in the extremal
points that the method of Lagrange multipliers finds.
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As a result of this theorem, we know that in our example earlier, one of the two points(
1√
2
, 1√

2

)
,
(
− 1√

2
,− 1√

2

)
is the maximum of f , while the other must be its minimum. By

plugging in both values to f , we can see that the first is the maximum, and the second is
the minimum.

To illustrate the power and versatility of the method of Lagrange multipliers, and to
help you get a better feel for how they work in practice, we work two examples using the
tools we’ve just developed:

Example. Consider the astroid, a curve in R2 formed by the equation

x2/3 + y2/3 = 1.

What points on this curve are the closest to the origin?

Solution. We want to minimize the distance function

f(x, y) =
√
x2 + y2

given the constraint

g(x, y) = x2/3 + y2/3 = 1.

Using the method of Lagrange multipliers, we know that these minimal points will be those
for which either ∇(f) or ∇(g) are undefined, or such that there is some λ such that

∇(f)
∣∣
a

= λ∇(g)
∣∣
a
.

So: calculating, we can see that

∇(f) =

(
x√

x2 + y2
,

y√
x2 + y2

)
,

which is defined whenever (x, y) 6= (0, 0), and

∇(g) =

(
2

3
· x−1/3,

2

3
· y−1/3,

)
,

which is defined whenever x 6= 0 and y 6= 0.
When either x or y = 0, we know that (in order to satisfy x2/3+y2/3 = 1) the other value

has to be ±1; so we immediately know that we should look at the four points (±1, 0), (0,±1)
when we’re looking for our extremal points. Apart from these locations, we know that both
of these gradients are well-defined and nonzero; so we’re looking for values x, y, λ such that

∇(f) =

(
x√

x2 + y2
,

y√
x2 + y2

)
= λ∇(g) =

(
2λ

3
· x−1/3,

2λ

3
· y−1/3,

)
.
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By equating these two vectors, we’re just trying to solve the two equations

x√
x2 + y2

=
2λ

3
· x−1/3,

y√
x2 + y2

=
2λ

3
· y−1/3

⇒ 1√
x2 + y2

=
2λ

3
· x−4/3,

1√
x2 + y2

=
2λ

3
· y−4/3

⇒x−4/3 = y−4/3

⇒x = ±y.

The only points that satisfy x = ±y and also x2/3 +y2/3 are the four points
(
± 1

2
√
2
,± 1

2
√
2

)
.

Combining these with the (±1, 0), (0,±1) points we discovered earlier, we have eight possible
extremal points. Plugging these into f(x) gives us 1

2 for the points with x = ±y and 1 for the
points with one of x, y = 0. Because the maximum and minimum values of f occur on these

points, we know that the closest points to the origin are precisely the points
(
± 1

2
√
2
,± 1

2
√
2

)
.

Example. Consider the following rough model for the economics of pie-baking:

• Your ingredients for a pie are apples (a), butter (b), flour (f), and sugar (s).

• Suppose that apples cost $2/unit, butter costs $3/unit, flour costs $1/unit, and sugar
costs $1/unit.

• Suppose that if you have a units of apples, b units of butter, f units of flour, and s units
of sugar, you can make roughly 4

√
abfs- many pies. (This is not an entirely implausible

guess for a function that tells you how many pies you can make: in particular, you
want a function that (1) is 0 whenever you don’t have one of your ingredients, which
taking the product of all of your ingredients does for you, and (2) grows linearly if
you increase the quantity of each of your ingredients linearly. [i.e. if you have k units
of each ingredient, this says you can make k pies, which seems accurate.] The formula
also allows you to slightly skew the ingredient proportions of your pies: if apples are
really expensive, you can have pies that have more dough to apples, whereas if sugar
gets really expensive you can just increase the apple ratio.)

• Finally, suppose you start with 100 units of currency, and that you cannot have a
negative amount of any of our ingredients (i.e. a, b, f, s ≥ 1.)

What is the maximum number of pies you can make?

Solution. This is a bit different than our earlier problems. In particular, instead of just
optimizing the function

F (a, b, f, s) = 4
√
abfs
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on one constraint, we are optimizing it over the inequalities

2a+ 3b+ f + s ≤ 100, a ≥ 0, b ≥ 0, f ≥ 0, s ≥ 0.

How can we do this with Lagrange multipliers? Well: to do this, we just need to consider
several cases. Specifically, suppose we have some maximum point (a, b, f, s). There are two
possibilities:

1. This maximum point occurs on the interior of the set formed by our constraints
2a + 3b + f + s ≤ 100, a ≥ 0, b ≥ 0, f ≥ 0, s ≥ 0. Therefore, this point can be found
by looking at D(f), as it’s a local maximum of f without any constraints!

2. Otherwise, this maximum point occurs on the boundary of the set formed by the
constraints 2a + 3b + f + s ≤ 100, a ≥ 0, b ≥ 0, f ≥ 0, s ≥ 0. In other words, this
maximum point occurs when we have either

g(a, b, f, s) = 2a+ 3b+ f + s = 100,

or when one of the four quantities a, b, f, s are 0. We can eliminate the cases where
we have 0 of any of our quantity by just noticing that this trivially restricts us to
making 0 pies, which is clearly not a maximum; this leaves us with just the above
single constraint. But this is exactly the situation that Lagrange multipliers are set
up to deal with! In particular, we can use Lagrange multipliers to maximize 4

√
abfs

with respect to the constraint g(a, b, f, s) = 2a+ 3b+ f + s = 100.

Comparing all of the critical points we find in these ways will yield the overall maximum of
4
√
abfs on our entire set.

We perform these calculations here. First, because

∇(F ) =

(
bfs

4(abfs)3/4
,

afs

4(abfs)3/4
,

abs

4(abfs)3/4
,

abf

4(abfs)3/4

)
,

we can see that the gradient of F is only undefined or zero at places where some of its
coördinates are zero or negative. Because our conditions require that a, b, f, s ≥ 0, and
in the case that any quantity is 0 we know that no pies are made, we know that this is
impossible: therefore, we don’t have to worry about f having any maxima on the interior
of our set of constraints.

Now, we turn to the constraint g(a, b, f, s) = 2a + 3b + f + s = 100. Using Lagrange
multipliers, we know that critical points will occur where

∇(F ) =

(
bfs

4(abfs)3/4
,

afs

4(abfs)3/4
,

abs

4(abfs)3/4
,

abf

4(abfs)3/4

)
= λ∇(g) = (2λ, 3λ, λ, λ).

This occurs at points that satisfy the four equations

bfs

4(abfs)3/4
= 2λ,

afs

4(abfs)3/4
= 3λ,

abs

4(abfs)3/4
= λ,

abf

4(abfs)3/4
= λ.
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By combining the first two equations, we can see that

bfs

4(abfs)3/4
= 2λ,

afs

4(abfs)3/4
= 3λ

⇒b = 2

(
4λ

1

fs
(abfs)3/4

)
, a = 3

(
4λ

1

fs
(abfs)3/4

)
⇒ b

2
=
a

3
.

Similarly, we can combine the middle two equations to get

afs

4(abfs)3/4
= 3λ,

abs

4(abfs)3/4
= λ

⇒f = 3

(
4λ

1

as
(abfs)3/4

)
, b =

(
4λ

1

as
(abfs)3/4

)
⇒f

3
= b,

and(similarly) the last two equations to get f = s. Combining these results, we can write
our point as (a, 2a3 , 2a, 2a), and get that

2a+ 3b+ f + s = 2a+ 2a+ 2a+ 2a = 100

⇒a = 12.5, (a,
2a

3
, 2a, 2a) = (12.5, 8.3, 25, 25).

With these ingredient ratios, we can make

4

√
12.5 · 8.3 · 25 · 25) ∼= 16

pies; as this is the only critical point that gives a nonzero value, we know that it must be
our maximum.
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