
Math 1c TA: Padraic Bartlett

Recitation 10: Final Review

Week 10 Caltech 2013

These are the notes for the final review I ran in my Thursday recitation. In rec, I only
got through like 2-3 examples: these notes have all five of the examples I planned.

First, a quick summary of what’s going to be on the final. We’re testing you on all of
the material we’ve covered since the midterm, i.e. weeks 5-10. A quick list of what we’ve
done in class thus far is listed here:

1. Integration in Rn.

(a) How to integrate a scalar function
over regions in R2 and volumes in
R3.

(b) How to integrate a scalar function
over surfaces in R3.

(c) How to integrate a scalar function
over a curve.

(d) How to integrate a vector field
over a surface in either R2 or R3.

(e) How to integrate a vector field
over a curve.

2. How to parametrize surfaces and
curves.

3. Integration tools.

(a) Green’s theorem.

(b) Stokes’s theorem.

(c) Divergence (i.e. Gauss’s) theo-
rem.

4. Applications of the integral.

(a) How to use Green’s theorem to
calculate the area of an object.

(b) How to use the integral to find
the average value of a function, or
center of mass of an object.

(c) How to use Green’s/Stokes’s the-
orem to switch between different
surface integrals / line integrals.

We’ve talked about the theory behind these concepts before: if the concepts are still
hazy, look them up in previous notes. Instead, what we’re going to do here is work example
problems on these concepts. If you want to use this to practice for the final, try reading
each problem, seeing if you can solve it yourself, and then read the solutions. These are
chosen to collectively be about as hard as the problems on the midterm (at least, I think
they are.)
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1 Practice Questions

Question 1 Let S denote the cut-off paraboloid surface formed by the equations z + 1 =
x2 + y2, z ≤ 0, oriented so that the z-component at the origin is positive. Let F denote the

vector field F (x, y, z) =
(
ezy, ez

2
x, ez

3
z
)

. Find the integral of ∇× F over S.

Solution. First, we calculate ∇× F :

∇× F =

((
∂F3

∂y
− ∂F2

∂z

)
,

(
∂F1

∂z
− ∂F3

∂x

)
,

(
∂F2

∂x
− ∂F1

∂y

))
=
(

0− 2ez
2
xz, ezy − 0, ez

2 − ez
)
.

You could parametrize S and directly integrate this vector over S. But this looks awful.
Instead, what we can do is use Stokes’ theorem! In particular, consider the surface D given
by the unit disk x2 + y2 ≤ 1, z = 0. This surface has the same boundary as our surface
S: specifically, ∂S = ∂D = x2 + y2 = 1. Suppose we orient the unit disk with the normal
(0, 0, 1), which is normal to the unit disk everywhere. Then these boundaries have the same
orientation, if both boundaries are oriented positively with respect to their corresponding
surfaces.

Therefore, we can use Stokes’s theorem once to see that∫∫
S

∇× F · dS =

∫
∂S+

F · ds,

and we can use it again to see that∫
∂D+

F · ds =

∫∫
D

∇× F · dS.

Because ∂S = ∂D, these integrals are all the same! So, to calculate
∫∫
S

∇× F · dS, we can

calculate
∫∫
D

∇×F · dS. We do this here. Notice that the unit normal n to the unit disk as

a surface in R3 is simply (0, 0, 1); this saves us the effort of having to parametrize the disk,
because ∫∫

D

∇× F · dS =

∫∫
D

·(0, 0, 1) dS = 0.

Lots of set-up, but it makes our calculations trivial: we didn’t even have to parametrize
the unit disk! This is one of the cooler applications of Stokes’s theorem: switching between
different surfaces.

You can also use things like Stokes’s and Green’s theorem to switch integrals between
different curves: it’s a little weirder, but sometimes is really useful.
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Question 2 Take a pond whose outer perimeter is given by a circle of radius 4 and contains
16π cubic centimeters of water. Drop a rock in the center of the pond. Assume that the
rock’s edges are roughly vertical, i.e. we can model the boundary of the rock in the pond as
some 2-d shape. After doing this, assume the water has height h in centimeters.

Suppose that there is an ant walking around the boundary of the rock. Suppose further
that this ant is being blown on by a wind current, which imparts force on the ant corre-
sponding to the vector field F(x, y) = (−y, x). In one walk of the ant around the boundary
of the rock, how much energy does the wind impart on the ant? In other words, what is∫
γ1
F · ds?

Solution. We draw the situation here.

γ1

γ2

As labelled above, let γ1 denote the perimeter of the rock, and γ2 denote the perimeter of
the pond. Let R denote the region between the outer curve and the inner curve. We want
to calculate ∫

γ1

F · dS.

This is. . . hard, because, well, we don’t actually know what γ1 is. However, we can get
around this with Green’s theorem!

In particular: notice that Green’s theorem says that the integral of
(
∂F2
∂x −

∂F1
∂y

)
over R

is equal to the integral of F over the two boundary components γ1, γ2, provided that they’re
both oriented (as drawn) so that R is always on the left-hand-side of each curve. In other
words, ∫∫

R

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫
γ1

F · ds+

∫
γ2

F · ds.

So, we can solve for the integral we want to study, in terms of two other integrals:∫
γ1

F · ds =

∫∫
R

(
∂F2

∂x
− ∂F1

∂y

)
dA−

∫
γ2

F · ds.
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These are, surprisingly, things we can calculate. In specific, we have that∫∫
R

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫∫
R

(1− (−1)) dA =

∫∫
R

2dA = 2 · (surface area of R).

Because the pond started with 16π cubic centimeters of water and had height h after we
dropped the rock in, we know that R has surface area 16π

h , and therefore that this integral
is 32π

h .
As well, we can find

∫
γ2
F · ds. We parametrize γ2 as γ2(t) = (4 cos(t), 4 sin(t)):∫

γ2

F · ds =

∫ 2π

0
(−4 sin(t), 4 cos(t)) · (−4 sin(t), 4 cos(t)) dt =

∫ 2π

0
16dt = 32π.

Therefore, we can combine these two integrals to calculate
∫
γ1
F · ds:∫

γ1

F · ds = 32π

(
1

h
− 1

)
.

This is pretty cool: we know exactly how much work was done by this wind current,
even though we have no idea what path we integrated over!

Question 3 Let T be a triangle with vertices (1, 0, 0), (0, 2, 0), (0, 0, 3). If this triangle is
made out of some material with uniform density across its surface, what is the x-coördinate
of the center of mass of T?

Solution. We want to find the x-coördinate of the center of mass of T . This is the “average”
x-coördinate over our entire surface. Recall the following: if we want to find the average
value of a function f on a surface T , we want to find the integrals

∫∫
T fdA and

∫∫
T 1dA,

and divide the first of these two integrals by the second: this gives us the average value of
f over T .

So. We start by parametrizing our triangle. We do this by considering coördinates
one-by-one. We first look at x: over our entire triangle, x ranges from 0 to 1.

We now look at the possible range of y-values, given x. We do this by projecting our
triangle onto the xy-plane: there, this is the triangle with vertices (0, 0), (1, 0), (0, 2).
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Given any fixed value of x, we can see that y ranges from 0 to 2− 2x.
Finally, we need to solve for z given x and y. To do this, we just need to find the plane

this triangle lies in: this will give us an equation relating x, y and z. We do this by taking
the generic equation for a plane

ax+ by + cz = d

and plugging in the three points (1, 0, 0), (0, 2, 0), (0, 0, 3) into this equation:

a = d, b =
d

2
, c =

d

3
.

This gives us that our plane has the equation

dx+
d

2
y +

d

3
z = d,

which (if we divide by d) becomes

x+
y

2
+
z

3
= 1.

Solving for z gives us

z = 3− 3x− 3y

2
.

So, we can parametrize our triangle via the map T (x, y) =
(
x, y, 3− 3x− 3y

2

)
, where x

ranges from 0 to 1 and (given x) y ranges from 0 to 2− 2x.
So, if we want to find

∫∫
T 1dA, we can just use this parametrization:∫∫

T
1 dA =

∫ 1

0

∫ 2−2x

0

∣∣∣∣∣∣∣∣∂T∂x × ∂T

∂y

∣∣∣∣∣∣∣∣ dxdy
=

∫ 1

0

∫ 2−2x

0

∣∣∣∣∣∣∣∣(1, 0,−3

)
×
(

0, 1,−3

2

)∣∣∣∣∣∣∣∣ dxdy
=

∫ 1

0

∫ 2−2x

0

∣∣∣∣∣∣∣∣(3,
3

2
, 1

)∣∣∣∣∣∣∣∣ dxdy
=

∫ 1

0

∫ 2−2x

0

√
9 +

9

4
+ 1 dxdy

=

∫ 1

0

∫ 2−2x

0

7

2
dxdy

=

∫ 1

0
7− 7x dx

=
7

2
.
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Similarly, if we want to find
∫∫
T xdA, we can do mostly the same thing:∫∫

T
1 dA =

∫ 1

0

∫ 2−2x

0
x

∣∣∣∣∣∣∣∣∂T∂x × ∂T

∂y

∣∣∣∣∣∣∣∣ dxdy
=

∫ 1

0

∫ 2−2x

0

7x

2
dxdy

=

∫ 1

0
7x− 7x2 dx

=
7

6
.

Therefore, the x-coördinate of the center of mass is just the ratio of these two integrals,
i.e. 7/6

7/2 = 1
3 .

Question 4 Let T be the same triangle as in Question 3. Integrate the vector field F(x, y, z) =
(xy, yz, zx) over the perimeter of this triangle, oriented in the counterclockwise direction as
viewed from the positive octant.

Solution. We could parametrize the boundary of this triangle, but that seems hard. In-
stead, we will use Stokes’s theorem, which says that∫

∂T

F · ds =

∫∫
T

∇× F · dS.

Using this, we can instead integrate ∇ × F over the triangle itself, because we already
parametrized that! Convenient.

We do this here.∫∫
T

∇× F · dS =

∫ 1

0

∫ 2−2x

0
(∇× F) ·

(
∂T

∂x
× ∂T

∂y

)
dA

=

∫ 1

0

∫ 2−2x

0

((
∂F3

∂y
− ∂F2

∂z

)
,

(
∂F1

∂z
− ∂F3

∂x

)
,

(
∂F2

∂x
− ∂F1

∂y

))
·
(
∂T

∂x
× ∂T

∂y

)
dA

=

∫ 1

0

∫ 2−2x

0
(0− y, 0− z, 0− x)

∣∣∣
T (x,y)

·
(

3,
3

2
, 1

)
dA

=

∫ 1

0

∫ 2−2x

0
−3y − 3

2

(
3− 3x− 3

2
y

)
− x dA

=

∫ 1

0

∫ 2−2x

0
−9

2
− 3

4
y +

7

2
x dA

=

∫ 1

0
−9 + 9x− 3

8
(2− 2x)2 + 7x− 7x2 dA

=

∫ 1

0
−17

2
x2 + 19x− 21

2
dA

= −17

6
+

19

2
− 21

2
= −23

6
.
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Question 5 Directly calculate the integral of F (x, y, z) = (3x2y,−3xy2, z) over the surface
of the unit cube, using the orientation depicted below. Then, use the divergence theorem to
calculate this in a much faster manner.

x

y

z

Solution. If we want to do this directly, break the unit cube into its six sides

[0, 1]× [0, 1]× {0}, [0, 1]× [0, 1]× {1},
[0, 1]× {0} × [0, 1], [0, 1]× {1} × [0, 1]

{0} × [0, 1]× [0, 1], {1} × [0, 1]× [0, 1],

notice that the normals to these sides are precisely the normals (0, 0,±1), (0,±1, 0), (±1, 0, 0)
as depicted in the above diagram, and calculate∫∫

surface of cube

F · dS

=

∫ 1

0

∫ 1

0
F
∣∣
(x,y,0)

· (0, 0,−1)dxdy +

∫ 1

0

∫ 1

0
F
∣∣
(x,y,1)

· (0, 0, 1)dxdy

+

∫ 1

0

∫ 1

0
F
∣∣
(x,0,z)

· (0,−1, 0)dxdz +

∫ 1

0

∫ 1

0
F
∣∣
(x,1,z)

· (0, 1, 0)dxdz

+

∫ 1

0

∫ 1

0
F
∣∣
(0,y,z)

· (−1,−0, 0)dydz +

∫ 1

0

∫ 1

0
F
∣∣
(1,y,z)

· (1, 0, 0)dydz

=

∫ 1

0

∫ 1

0
0dxdy +

∫ 1

0

∫ 1

0
1dxdy +

∫ 1

0

∫ 1

0
0dxdz +

∫ 1

0

∫ 1

0
−3x dxdz

+

∫ 1

0

∫ 1

0
0dydz +

∫ 1

0

∫ 1

0
3ydydz

=1.

Alternately, if you use the divergence theorem, we can calculate this in a much faster
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way: ∫∫
surface of cube

F · dS =

∫∫∫
cube

(divF )dV

=

∫ 1

0

∫ 1

0

∫ 1

0
(6xy − 6xy + 1)dxdydz

=

∫ 1

0

∫ 1

0

∫ 1

0
1dxdydz = 1.

Question 6 Let c(t) =
(

cos(t)− sin2(t)
2 , cos(t) sin(t)

)
denote the “fish curve” drawn below:

-.5 .5 1-1

x

y

Find the area contained within this curve.

Solution. This looks like a textbook example of when to use the Green’s theorem formula
for the area contained in a curve. Specifically, Green’s theorem, as applied to finding the
area contained within a curve, says that if a region R is bounded by some simple closed
curve c(t) that is oriented positively (i.e. so that R is on the left as we travel along c(t)),
then

area(R) =

∫∫
R

1dxdy
Green’s theorem︷︸︸︷

= =
1

2

∫
c(t)

(−y, x) dc.
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If we just plug in our curve, we get that 1
2

∫
c(t) (−y, x) dc is

1

2

∫ 2π

0

(
− cos(t) sin(t), cos(t)− sin2(t)

2

)
·
(
− sin(t)− sin(t) cos(t), cos2(t)− sin2(t)

)
dt

=
1

2

∫ 2π

0

(
cos(t) sin2(t) + cos2(t) sin2(t) + cos3(t)− cos(t) sin2(t)− cos2(t) sin2(t)

2
+

sin4(t)

2

)
dt

=
1

2

∫ 2π

0

(
cos2(t) sin2(t)

2
+ cos3(t) +

sin4(t)

2

)
dt

=
1

2

∫ 2π

0

(
sin2(2t)

8
+ cos(t)(1− sin2(t)) +

(1− cos(2t))2

8

)
dt

=
1

2

∫ 2π

0

(
1− cos(4t)

16
+ cos(t)(1− sin2(t)) +

1− 2 cos(2t) + cos2(2t)

8

)
dt

=
1

2

∫ 2π

0

(
1− cos(4t)

16
+ cos(t)(1− sin2(t)) +

1− 2 cos(2t)

8
+

1 + cos(4t)

16

)
dt

=
1

2

∫ 2π

0

(
1

4
+ cos(t)(1− sin2(t))− cos(2t)

4

)
dt

=
1

2

(
t

4
+ sin(t)− sin3(t)

3
− sin(2t)

8

) ∣∣∣2π
0

=π/4.

But is this plausible? Well: looking at our fish curve, it seems to contain about (in the
head-part) the area of an ellipse from −.5 to 1 with y-height from −1 to 1, which is about
3π/2. This is much greater than π/4, the area of a circle with radius .5. So: something has
gone wrong!

What, specifically? Well, to apply Green’s theorem, we needed a simple closed curve
that was positively oriented. Did we have that here? No! In fact, our curve c has a self-
intersection: c(π/2) = c(3π/2), and in fact the tail part of our curve is oriented negatively
(i.e. if we travel around our curve from π/2 to 3π/2, our region is on the right-hand side.
In fact, we’ve calculated the area of the head minus the area in the tail!

To calculate what we want, we want to take the integral above evaluated from −π/2
to π/2 (the head) and then add the integral from 3π/2 to π/2 (travelling backwards here
makes it so that we get the right orientation on the tail.) Specifically, we have

1

2

(
t

4
+ sin(t)− sin3(t)

3
− sin(2t)

8

) ∣∣∣π/2
−π/2

=
1

2

(
π

8
− −π

8
+ 1− (−1) +

(
−1

3

)
− 1

3
+ 0− 0

)
=
π

8
+

2

3
,

while

1

2

(
t

4
+ sin(t)− sin3(t)

3
− sin(2t)

8

) ∣∣∣π/2
3π/2

=
1

2

(
−π

8
− π

8
+ 1− (−1) +

(
−1

3

)
− 1

3
+ 0− 0

)
=− π

8
+

2

3
;

therefore, our total area is π
8 + 2

3 +−π
8 + 2

3 = 4
3 .
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