
Math 1c TA: Padraic Bartlett

Recitation 3: More Applications of the Derivative

Week 3 Caltech 2012

1 Random Question

Question 1 A graph consists of the following:

• A set V of vertices.

• A set E of edges, where each edge consists of a distinct unordered pair of distinct
vertices.

For example, the pentagon

1

2

34

5

can be thought of as the graph with

• V = {1, 2, 3, 4, 5},

• E =
{
{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1}

}
.

Given a graph G and vertex v ∈ V , we can define the degree of v to be the number
of edges that have v as one of their endpoints. For example, every vertex in the pentagon
above has degree 2, as each vertex is the endpoint for precisely two edges.

A triangle decomposition of a graph G is a way to break its edge set E apart into
disjoint triangles. It’s not too hard to show that if a triangle decomposition exists, then

• every vertex needs to have even degree: this is because each of a triangle’s vertices has
precisely two edges from the triangle hitting it, so if we’ve broken all of our edges into
triangles, every vertex has degree equal to 2×(the number of triangles that use that
vertex), which is even.

• The number of edges in E has to be a multiple of 3, because each triangle uses three
edges and they’re all disjoint.

Suppose that G is a graph on n vertices

1. (Known, not too hard:) Show that if the degree of every vertex is n − 1 (i.e. every
vertex is connected to every other vertex,) these conditions are also sufficient: i.e.
if all of the degrees are even and the number of edges is a multiple of 3, a triangle
decomposition exists.

2. (Known, fairly hard:) Show that if the degree of every vertex is ≥
(
1− 10−24

)
n – i.e.

the vertices are connected to “almost every” other vertex, these conditions are still
sufficient.
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3. (Current research results I’m working on) Show that if the degree of every vertex is
≥
(
1− 10−4

)
n, then these conditions are still sufficient.

4. (Conjecture, probably wildly difficult) Show that if the degree of every vertex is ≥ 3
4n,

then these conditions are still sufficient.

2 Directional Derivatives

In our last class, we spent a lot of time working on the idea of a derivative in Rn. Specif-
ically, we introduced the idea of partial derivatives, used these to construct the total
derivative (a “linear approximation” to our function at a point, which was similar to the
“linear approximation” idea that we had for the derivative in R1,) and discussed some of
the geometric interpretations and applications of these ideas.

However, these techniques were not the only ways to talk about the derivative! Another,
different, way is to generalize the idea of “slope” from R1 via the concept of the directional
derivative: we discuss how to do this below.

In R1, the derivative of a function f : R → R at some point a is the “slope” of the
graph f(x) = y at the point (a, f(a)): essentially, we are measuring the change in f(x) as
we move along the x-axis. However, for functions Rn → R we are no longer restricted to
just the x-axis; instead, we can move along any vector in Rn! This leads us to define the
directional derivative of a function f : Rn → R at some point a, along some direction v,
as the “slope” of f at the point a, as measured in the direction v. More formally:

Definition. The directional derivative of a function f : Rn → R at some point a along
some direction v is the derivative

f ′(a; v) :=
d

dt
(f(a + t · v)

∣∣∣
t=0

.

To illustrate what’s going on here, consider the following example:

Question 2 Consider the function f(x, y) = −
√
x2 + y2. What is the directional derivative

of this function at the point (0,−1) in the direction (0, 1)?

Solution. First, to get a good idea of what’s going on in this problem, we graph our
function:

z

x

y

a
v

f (a;v)
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Visually, if we look at the point (0,−1) and its slope in the direction (0, 1), we can see
that it should be 1, just by examination. So, let’s calculate, and see if our visual intuition
matches our mathematical definition:

f ′((0,−1); (0, 1)) =
d

dt
(f((0,−1) + t · (0, 1)))

∣∣∣
t=0

=
d

dt
(f(0, t− 1))

∣∣∣
t=0

=
d

dt

(
−
√

02 + (t− 1)2
) ∣∣∣

t=0

=
d

dt
(−|t− 1|)

∣∣∣
t=0

=
d

dt
(−(−(t− 1)))

∣∣∣
t=0

, [ because near 0, (t− 1) is negative]

=
d

dt
(t− 1)

∣∣∣
t=0

= 1
∣∣∣
t=0

= 1.

This matches our visual picture and our intuition.

The following result can make calculating the directional derivative easier, in the case
that we already know the gradient of a function:

Theorem 3 Suppose that f is differentiable at some point a: one notable case where this
happens is when all of f ’s partial derivatives are continuous at a, as we mentioned last
class. Then, the directional derivative of a function f : Rn → R at some point a along
some direction v is given by the dot product of the gradient of f at a with v/||v||. In other
words,

f ′(a; v) :=∇f
∣∣∣
a
· v

||v||
.

To illustrate the use of this theorem, return to our cone problem from earlier. There,
we had f(x, y) = −

√
x2 + y2; thus, if we hold y constant, we can see that

∂f

∂x
= − 2x

2
√
x2 + y2

=
−x√
x2 + y2

.

Similarly, by holding y constant, we have

∂f

∂y
=

−y√
x2 + y2

.
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Therefore, we know that the directional derivative of f at (0,−1) in the direction (0, 1)
is given by(

∂f

∂x
(0,−1),

∂f

∂y
(0,−1)

)
· (0, 1) =

(
−(0)√

02 + (−1)2
,
−(−1)√

02 + (−1)2

)
· (0, 1)

= (0, 1) · (0, 1)

= 1,

which matches our earlier answer.

3 Higher-Order Derivatives and their Applications

Another thing we could want to do with the derivative, motivated by what we were able to
do in R1, is the concept of higher-order derivatives. These are relatively easy to define
for partial derivatives:

Definition. Given a function f : Rn → R, we can define its second-order partial deriva-
tives as the following:

∂2f

∂xi∂xj
=

∂

∂xi

(
∂f

∂xj

)
.

In other words, the second-order partial derivatives are simply all of the functions you can
get by taking two consecutive partial derivatives of your function f .

A useful theorem for calculating these partial derivatives is the following:

Theorem 4 A function f : Rn → R is called C2 at some point if all of its second-order
partial derivatives are continuous at that point. If a function is C2, then the order in which
second-order partial derivatives are calculated doesn’t matter: i.e.

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
,

for any i, j.

It bears noting that if the conditions of this theorem are not met, then the order for
computing second-order partial derivatives may actually matter! One such example is the
function

f(x, y) =

{
x3y−xy3
x2+y2

, (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

At (0, 0), you can calculate that ∂2f
∂x∂y = 1 6= −1 = ∂2f

∂y∂x : a result that occurs because the
second-order partials of this function are not continuous.
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However, the interesting aspects of higher-order partial derivatives are not really in
their calculation; rather, the applications of higher-order partial derivatives are the things
worth studying. In R, for example, we could turn the second derivative of a function into
a lot of information about that function: in particular, we could use this second derivative
to determine

• whether a given critical point was a local minima or maxima,

• whether a function is concave up or down at a given point,

• and what the second-order Taylor approximation to that function was at a point.

Can we do the same for functions from Rn to R? As it turns out, the answer is yes! The
tool with which we do this is called the Hessian, which we define here:

Definition. The Hessian of a function f : Rn → R at some point a, H(f)
∣∣
a
(h), is the

following function from Rn to R:

H(f)
∣∣
a
(h) =

1

2
(h1, h2, . . . hn)


∂2f

∂x1∂x1
(a) . . . ∂2f

∂x1∂xn
(a)

...
. . .

...
∂2f

∂xn∂x1
(a) . . . ∂2f

∂xn∂xn
(a)




h1
h2
...
hn


The main useful property of the Hessian is the following:

Theorem 5 Let f : Rn → R be a function with well-defined second-order partials at some
point a, and H = H(f)

∣∣
a

be its Hessian. Pick any two co ordinates xi, xj in Rn: then

∂2f

∂xi∂xj
(a) =

∂2H

∂hi∂hj
.

In other words, H’s second-order partial derivative are precisely the second-order partial
derivatives of f at a! So H is basically a function designed to have the same second-order
partials as f at a.

One quick thing this theorem suggests is that we could use H(f)
∣∣
a

to create a “second-
order” approximation to f at a, in a similar fashion to how we used the derivative to create
a linear (i.e. first-order) approximation to f . We define this below:

Theorem 6 If f : Rn → R is a function with continuous second-order partials, we define
the second-order Taylor approximation to f at a as the function

T2(f)
∣∣
a
(a + h) = f(a) + (∇f)(a) · h +H(f)

∣∣
a
(h).

You can think of f(a) as the constant, or zero-th order part, (∇f)(a) · h as the linear part,
and H(f)

∣∣
a
(h) as the second-order part of this approximation.

To illustrate how this process actually creates a pretty decent approximation to f , we
calculate an example:
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Example. Calculate the second-order Taylor approximation to the function f(x, y) = exy

at the origin.

Answer. Calculating the second derivatives of f is pretty straightforward:

∂f

∂x
= yexy,

∂f

∂y
= xexy

∂2f

∂x2
= y2exy,

∂2f

∂y2
= x2exy,

∂2f

∂x∂y
= xyexy + exy =

∂2f

∂y∂x
.

If we evaluate these partials at 0 and plug them into the definition above for T2(f)
∣∣
(0,0)

,
we get

T2(f)
∣∣
(0,0)

((0, 0) + (h1, h2)) = f(0, 0) + (∇f)(0, 0) · (h1, h2) +H(f)
∣∣
(0,0)

(h1, h2)

= 1 + (0, 0) · (h1, h2) +
1

2
(h1, h2)

(
0 1
1 0

)(
h1
h2

)
= 1 +

1

2
(h1, h2)

(
h2
h1

)
= 1 +

1

2
(2h1h2)

= 1 + h1h2.

So, at the origin, the second-order Taylor approximation for f is just T2(f)(x, y) = 1 + xy.
The following graph, with exy in solid red and T2 in dashed blue, shows that it’s actually a
somewhat decent approximation at (0, 0):

z

x

y
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As well, we can use the second derivatives to search for and find local minima and
maxima! We define these terms here:

Definition. A point a ∈ Rn is called a local maxima of a function f : Rn → R iff there is
some small value r such that for any point x in Ba(r) not equal to a, we have f(x) ≤ f(a).

A similar definition holds for local minima.

So: how can we use the derivative to find such local maxima? Well, it’s clear that (if
our function is differentiable in a neighborhood around this point) that no matter how we
move to leave this point, our function must not increase – in other words, for any direction
v ∈ Rn, the directional derivative f ′(a,v) must be ≤ 0. But this means that in fact all of
the directional derivatives must be equal to 0!, because if f ′(a,v) was < 0, then f ′(a,−v)
would be > 0.

This motivates the following definitions, and basically proves the following theorem:

Definition. A point a is called a stationary point of some function f : Rn → R iff ∇(f)
∣∣∣
a

=

(0, . . . , 0). A point a is called a critical point if it is a stationary point, or f is not
differentiable in any neighborhood of a.

Theorem 7 A function f : Rn → R attains its local maxima and minima only at critical
points.

However, it bears noting that not every critical or stationary point is a local maxima
or minima! A trivial example would be the function f(x, y) = x2 − y2: the origin is a
stationary point, yet neither a local minima or maxima (as f(0, ε) < 0 < f(ε, 0), and thus
there are positive and negative values of f attained in any ball around the origin, where it
is 0.)

How can we tell which stationary points do what? Well, in one-variable calculus, we
used the idea of the “second derivative” to determine what was going on! In specific, we
knew that if the second derivative of a function f at some point a was negative, then tiny
increases in our variable at that point would cause the first derivative to decrease, and tiny
decreases in our variable at that point would cause the negative of the first derivative to
increase – i.e. cause the first derivative to decrease, and therefore make the function itself
decrease! Therefore, the second derivative being negative at a stationary point implied that
that point was a local maxima.

In higher dimensions, things are tricker – at a given point a, we no longer have this
idea of a “single” second derivative, but instead have many different second derivatives, like
∂2f
∂x∂y (a) and ∂2f

∂z2
(a). Yet, we can still use the same ideas as before to figure out what’s going

on!
In particular, in one dimension, we said that we wanted tiny positive changes of our

variables to make the first functions decrease. In other words, given any of the partials ∂f
∂xi

,
we want any positive changes in the direction of this partial to make our function decrease
– i.e. we want the directional derivative of ∂f

∂xi
to be negative in any direction v, where all

of the coördinates of v are positive. (Positivity here stems from the same reason that in
one dimension, we have that the first derivative is increasing for all of the points to the left
of a maxima and decreasing for all of the points to the right of a maxima.)
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So: this condition, if we write it out, is just asking that for every i and nonzero v, that(
∂2f

∂x1∂xi
(a),

∂2f

∂x2∂xi
(a), . . .

∂2f

∂xn∂xi
(a)

)
· (v21, v22, . . . v2n)

is negative. If you choose to write this out as a matrix, this actually becomes the claim
that for any v 6= 0, we have

vT ·


∂2f

∂x1∂x1
(a) . . . ∂2f

∂x1∂xn
(a)

...
. . .

...
∂2f

∂xn∂x1
(a) . . . ∂2f

∂xn∂xn
(a)

 · v < 0.

linear algebra, you may hopefully remember that any matrix satisfying this condition is
called being negative-definite, and is equivalent to having all n of your eigenvalues existing
and being negative. Similarly, if we were looking for a local minima, we would be asking
that the above matrix product is always positive: i.e. that the matrix is positive-definite,
which is equivalent to all of its eigenvalues being positive.

But we’ve seen this construction before! In particular, this matrix-product thing above
is just the Hessian! Based on these observations, we make the following definitions and
observations:

Definition. The Hessian H(f)
∣∣
a

of a function f at some point a is called positive-definite
if for all h 6= 0,

H(f)
∣∣
a
(h) > 0,

and similarly that the Hessian is negative-definite if for all h 6= 0,

H(f)
∣∣
a
(h) < 0.

Theorem 8 The Hessian H(f)
∣∣
a

is positive-definite if and only if the matrix
∂2f

∂x1∂x1
(a) . . . ∂2f

∂x1∂xn
(a)

...
. . .

...
∂2f

∂xn∂x1
(a) . . . ∂2f

∂xn∂xn
(a)


is positive-definite. (The same relation holds for being negative-definite.)

Theorem 9 A function f : Rn → R has a local maxima at a stationary point a if all of its
second-order partials exist and are continuous in a neighborhood of a, and the Hesssian of f
is negative-definite at a. Similarly, it has a local minima if the Hessian is positive-definite
at a. If the Hessian takes on both positive and negative values there, it’s a saddle point:
there are directions you can travel where your function increase, and others where it will
decrease. Finally, if the Hessian is identically 0, you have no information as to what your
function may be up to: you could be in any of the three above cases.

A quick example, to illustrate how this gets used:
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Example. For f(x, y) = x2 + y2, g(x, y) = −x2 − y2, and h(x, y) = x2 − y2, find local
minima and maxima.

Solution. First, by taking partials, it is clear that the only point at which the gradient of
these functions is (0, 0) is the origin. There, we have that

H(f)
∣∣∣
(0,0)

=

[
2 0
0 2

]
, H(g)

∣∣∣
(0,0)

=

[
−2 0
0 −2

]
, H(h)

∣∣∣
(0,0)

=

[
2 0
0 −2

]
,

and thus that f is positive-definite at (0,0), g is negative-definite at (0,0), and h is neither
at (0,0) by examining the eigenvalues. Thus f has a local minima at (0, 0), g has a local
maxima at (0,0), and h has a saddle point at (0,0).
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