
Math 1c TA: Padraic Bartlett

Recitation 1: Open and Closed Sets; Limits and Continuity

Week 1 Caltech 2012

1 Random Question

Take a square piece of paper. If you glue opposite edges as described below, you can turn
this square into a torus, i.e. the doughnut shape below:

Can you glue the opposite sides of a hexagon together to get a torus?

2 Administrivia

Here are most of the random administrative details for the course:

• Recitation time: 9-10am, in 103 Downs. [Note: this has changed from the posted
room on REGIS.]

• My email: padraic@caltech.edu

• My office: 360 Sloan.

• My office hours: 8-9pm on Sunday night, in either my office or the third-floor Sloan
lounge, and/or by appointment. Also, I work in front of Chandler most days; if you
have a question and come across me there, feel free to just talk to me!

• My website: www.its.caltech.edu/∼padraic. Course notes for every recitation will be
posted here, usually within a few days of the recitation.

• HW policy: The course-wide policy is that (1) because your lowest HW grade is
dropped, (2) no late HW will be allowed without a note from the health center or the
deans. It bears noting that both entities are remarkably kind, and as long as your
reason for needing more time is not something like “up all night playing LoL,” they’ll
grant an extension.

• Random questions: I post a random question at the start of every recitation! If you’ve
seen the material in rec before, and get distracted, they’re meant to offer something
mathematically interesting to focus on until the lecture returns to a place you haven’t
seen. Because we’re at Caltech, and pretty much anything we talk about in Math
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1 *some* of you have seen before, it struck me as a decent way to avoid boring
some students without losing others. If you solve any of them, tell me! I am always
interested to see solutions.

3 Level Curves

The idea behind level curves is pretty simple: suppose that we have a function f(x, y) :
R2 → R. If we consider f(x, y) to be a “height” function, we can interpret the “graph” of
f(x, y) = z as the set of all values {(x, y, f(x, y)) : (x, y) ∈ R2}:

z

x

y

(The graph of f(x, y) =
√
x2 + y2, a cone centered around the positive z-axis.)

So: given a function f(x, y), how can you quickly and accurately get an idea of what the
graph of f(x, y) looks like?

• Snarky answer: Mathematica.

• Serious answer: level curves!

Definition. Take a function f(x, y), and some height value h. The level curve of f(x, y)
at height h is just the set of points (x, y) in R2 that satisfy the equation

f(x, y) = h.

To quickly get an idea of what the graph of a function f(x, y) is, it usually suffices to find
the level curves of f(x, y) for a handful of height values,and then to draw each level curve
in R3 on its corresponding 2-dimensional plane {(x, y, h) : (x, y) ∈ R2}. To illustrate this
process, we calculate a quick example below:

Question 1 Draw some of the level curves of

f(x, y) =
√

25− x2 − y2.

What does this shape look like?
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Solution. Pick a few promising-looking values of h: say, h = 0, 1, 2, 3, 4, 5. For each value
of h, then, let’s find the solutions to the equation

h =
√

25− x2 − y2.

If we square both sides, subtract h2 from both sides, and add x2 + y2 to both sides we have

x2 + y2 = 25− h2.

The solutions of this equation is precisely a circle of radius
√

25− h2; therefore, for our
given values of h, we have that these level curves are circles of radius 5,

√
24,
√

21, 4, 3, 0.
Graphing these values shows us that f(x, y) is a hemisphere of radius 5, as drawn below:

z

x

y

Level curves are useful for much more than just drawing graphs. One quick example
comes from physics, and can be described as follows:

• Suppose that you have a particle p with mass m whose position is constrained to the
parabola y = x2:

y

x

• At any time, roughly speaking, we can break the total energy possessed by this
particle into two quantities: its kinetic energy, which is given by 1

2mv
2, and its

potential energy, which (if we assume that our parabola is in a lab on the surface
of the earth, and that the only force acting on it is gravity) is roughly 9.8m · x2.
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• Fun Fact of Physics: in any closed system, energy is conserved. In other words, if
we assume that our particle’s motion is frictionless and that our system is otherwise
closed, the total energy posessed by our particle is always constant.

• So, if you want to view this in terms of level curves, consider the following way to
describe our particle in three dimensions:

energy

position

velocity

Suppose that our particle starts off with energy e: then the set of possible posi-
tion/velocity pairs it can have is precisely the level curve of

1

2
mv2 + 9.8mx2.

at height e. In particular, if our particle starts with energy 0, we can see that it must
be at rest at the bottom of our parabola!

This is a relatively simple toy version of this problem; in general, however, you can use
these methods to transform positional knowledge of particles into knowledge of its velocity
(and vice-versa.)

4 Limits and Continuity in Rn

4.1 Basic definitions.

We now turn to a discussion of limits and continuity as they exist in Rn:

Definition. For a set D ⊆ Rn, values a ∈ Rn,L ∈ Rm, and a function f : D → Rm, we say
that

lim
x→a

f(x) = L

if

• (informally:) As x goes to a, f(x) goes to L.

• (symbolically:) ∀ε > 0,∃δ > 0 s.t. ∀x ∈ D,x 6= a, we have that ((||x − a|| <
δ) implies (||f(x)− L|| < ε)).
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Notice that this definition is almost completely identical to the one we came up with in
Ma1a, for R! The only difference is that we’ve replaced |x−a| and |f(x)−L|’s with ||x−a||
and ||f(x)−L||; this is because in Rn, we measure distance using the Euclidean norm || · ||,
which happened to be equal to taking the absolute value | · | when n = 1.

Definition. A function f : D → Rn is continuous at a ∈ D iff

lim
x→a

f(x) = f(a).

Note that this definition is *exactly* the same as it was for R.

Just like in Math 1a, it’s easy to feel like there’s a big gap between seeing the definitions
for limits and continuity and being able to actually use them. Here, we describe a few
common strategies for how you can use these definitions:

• Combining limits: Often, the easiest way to compute limits is just to use your
past knowledge from Ma1a, alongside the fact that we know how limits behave under
operations like composition, product, sum, and quotient. Specifically, we know that
if f, g : Rn → Rm are a pair of functions whose limits exist as x→ a, we have

lim
x→a

(f(x) + g(x)) =
(

lim
x→a

f(x)
)

+
(

lim
x→a

g(x)
)
.

lim
x→a

(f(x) · g(x)) =
(

lim
x→a

f(x)
)
·
(

lim
x→a

g(x)
)

lim
x→a

(
f(x)

g(x)

)
=
(

lim
x→a

f(x)
)
/
(

lim
x→a

g(x)
)
, if lim

x→a
g(x) 6= 0.

Similarly, we can compose limits as well: if f : Rn → Rm is a function such that
limy→a f(y) = L, and g : Rk → Rn is a function such that limx→b g(x) = a. Then

lim
x→b

f(g(x)) = L.

In particular, this tells you that the composition of continuous functions is continuous,
as is their product, sum, and quotient (provided the denominator is nonzero.)

Using these tools, you can break lots of functions down into individual components
which you know are continuous / whose limits you know from Ma1a, and use this to
deduce the original limit.

• Using the definition: If the above strategy doesn’t work, you can always turn to
the definition of the limit. One “blueprint” for a proof that limx→a f(x) = L via the
definition is the following:

1. First, examine the quantity

||f(x)− L||.

Specifically, try to find a simple upper bound for this quantity that depends only
on |x− a|, and goes to 0 as x goes to a – something like |x− a| · (constants), or
|x− a|3 · (some bounded functions).
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2. Using this simple upper bound, for any ε > 0, choose a value of δ such that
whenever |x− a| < δ, your simple upper bound |x− a| · (bounded things) is < ε.
Often, you’ll define δ to be ε/(upper bound on bounded things), or something
like that.

3. Plug in the definition of the limit: for any ε > 0, we’ve found a δ such that
whenever |x− a| < δ, we have

|f(x)− L| < (simple upper bound depending on |x− a|) < ε.

Thus, we’ve proven that limx→a f(x) = L, as claimed.

• Proving discontinuity/that a limit DNE: Often, you will want to prove that
some function is in fact discontinuous at a point, or that it has no limit at a point. A
simple blueprint for showing that a function f has no limit at a given point a is the
following:

1. Find a pair of paths (i.e. continuous functions γ1, γ2 : R→ Rn) such that

γ1(0) = γ2(0), and

the single-variable limits

lim
t→0

f(γ1(t)) 6= lim
t→0

f(γ2(t))

Common choices of γ are γ(t) = (t, 0, 0, . . . 0) + a, the path that approaches
a along the first coördinate and holds all the others constant; other popular
choices are moving along a different coördinate than the first, as well as the path
γ(t) = (t, t+ . . . t) + a in which you move along all coördinates simultaneously.

2. If you have found two such paths, then you know that f cannot have a limit at
a; along these two paths, our function seems to be going to two different values,
which is impossible if a limit exists.

Similarly, to show that a function is not continuous, it suffices to simply find one path
γ(t), γ(0) = a along which

lim
t→0

f(γ(t)) 6= f(0).

To illustrate these techniques, we work a few examples:

4.2 Some worked examples.

Question 2 Consider the function f(x, y) : R2 → R, defined as follows:

f(x, y) =
y2

x2 + y2
, (x, y) 6= (0, 0)

Does f(x, y) have a limit at (0, 0)?
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Solution. As it turns out (and as you might be able to guess after attempting to graph or
sketch this function), no! This function is not continuous at (0, 0).

To prove this, we turn to the idea of paths that we discussed above: can we find two

paths γ1(t), γ2(t) : R→ R2 such that the function f(x, y) = y2

x2+y2
goes to one value on γ1,

and a different value on γ2?
After trying out a few paths, it’s not hard to find a few which go to different values. A

few examples: if γ1(t) = (t, 0), we have that γ1(0) = (0, 0), and that

lim
t→0

f(γ1(t)) = lim
t→0

02

t2 + 02
= 0

conversely, if γ2(t) = (t, t), we have that γ1(0) = (0, 0), and that

lim
t→0

f(γ1(t)) = lim
t→0

t2

t2 + t2
=

1

2
.

So these two paths go to different values: therefore, our function does not have a limit
as (x, y)→ (0, 0).

Question 3 Consider the function f(x, y, z) : R3 → R, defined as follows:

f(x, y) =
xyz

x2 + y2 + z2
, (x, y) 6= (0, 0)

0, (x, y, z) = (0, 0).

Is f(x, y, z) continuous everywhere?

Solution. Given the earlier problem, you might expect this function to be discontinuous
at (0, 0, 0); however, after about ten minutes of trying to find sequences that converge to
any other nonzero value, you might begin to doubt this intuition.

Which, as it turns out, is the correct move – because this function is continuous! To
prove that this is continuous at every point (a, b, c), we can consider two cases: either
(a, b, c) 6= (0, 0, 0), or (a, b, c) = (0, 0, 0). In the first case, we have that our function is just
something created by taking the three continuous functions π1(x, y, z) = x, π2(x, y, z) =
y, π3(x, y, z) = z and their products/sums/quotients. Because continuity is preserved un-
der products/sums/quotients where the denominator is nonzero, we’re looking at nonzero
points, and the denominator of xyz

x2+y2+z2
is nonzero whenever we’re looking at a nonzero

point, we know xyz
x2+y2+z2

is continuous at every nonzero point.

So we only have to look at the point (0, 0, 0). Here, we cannot use our earlier methods,
because we’re looking at a quotient where the denominator is going to 0; instead, we must
use the definition to prove our function is continuous here. Specifically, we can use the
blueprint we discussed above for proving things are continuous:

• We start by taking the quantity ||f(x− L||, and try to come up with a simple upper
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bound on it. In this case, we have for all (x, y, z) 6= (0, 0, 0),

||f(x, y, z)− (0, 0, 0)|| =
∣∣∣∣ xyz

x2 + y2 + z2

∣∣∣∣
≤
∣∣∣∣max{|x|3, |y|3, |z|3}

x2 + y2 + z2

∣∣∣∣
≤
∣∣∣∣max{|x|3, |y|3, |z|3}

max{x2, y2, z2}

∣∣∣∣
= |max{|x|, |y|, |z|}|.

(This trick, where we bounded a polynomial expression xyz from above by assuming
all of your variables x, y, z . . . were just the largest one max{|x|, |y|, |z|}, and bounded
another polynomial x2 + y2 + z2 from below by only taking the largest monomial
max{|x|2, |y|2, |z|2} – this is *super super useful*! Do this.)

• Now, we want to bound the ||x − a|| portion of our proof from below, so that it is
related to the simple upper bound we just got. In this case, we can use the observation
that

||(x, y, z)− (0, 0, 0)|| =
√
x2 + y2 + z2

≥
√

max{x2, y2, z2}
= |max{|x|, |y|, |z|}|.

• Now, given any ε > 0, use this knowledge to pick a value of δ > 0 such that whenever
||x−a|| < δ, ||f(x−L|| < ε! In particular, for our example, we’ve shown the following:

||f(x, y, z)− (0, 0, 0)|| ≤ |max{|x|, |y|, |z|}|, and

|max{|x|, |y|, |z|}| ≤ ||(x, y, z)− (0, 0, 0)||.

Therefore, if we pick δ = ε, we will have

||f(x, y, z)− (0, 0, 0)|| ≤ |max{|x|, |y|, |z|}| ≤ ||(x, y, z)− (0, 0, 0)|| < δ = ε,

which concludes our proof. So we’re done!
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