
Math 1c TA: Padraic Bartlett

Recitation 10: Final Review - Solutions to Sample Questions

Week 10 Caltech 2012

Solutions to the practice questions for the final are posted below!

1. Consider the ellipse (
x− y

2

)2

+

(
x+ y

4

)2

= 1,

depicted below.

x

y

What is the average value of the function F (x, y) = x2 on the interior of this ellipse?

Solution. Denote the region given by the interior of our ellipse as R. We are looking
for the average value of x2 over R: in other words, we want to calculate the ratio∫∫

R

x2dxdy∫∫
R

1 dxdy
.

To do this, we need a way to integrate over the region R: how can we do this? A
direct approach seems difficult; our ellipse is not centered on the axes, and therefore
we don’t have any nice ways (like using polar) to parametrize it.

However, if we use a change of variables map, we can make this integral much easier!
One particularly natural thing to try is to find a map T that sends the unit disk to
our ellipse; if we can do this, then we can use our change-of-variables map to notice
that ∫∫

R

x2dxdy =

∫∫
unit disk

x2
∣∣
T (x,y)

· det(D(T ))dxdy,
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which should hopefully be easier (as the unit disk is a lot easier to work with.)

So: visually, suppose we’re looking for a map that stretches and skews the unit disk
into this ellipse. If we want this stretching and skewing to preserve the “circular”
shape of our unit disk, we’d want our map to be linear: i.e. it should be of the form
T (x, y) = (ax + by, cx + dy) . As well, we want it to map the unit circle onto this
specific ellipse: i.e. we want to send the endpoint (1, 0) of the x-axis of the unit circle
onto the semimajor axis of the ellipse (i.e. the point (2, 2) at the end of our dashed
line in the upper-right quadrant), as well as sending the endpoint (0, 1) of the y-axis
of our unit circle to the semiminor axis (−1, 1) (i.e. the point at the end of the dashed
line in the upper-right quadrant.)

In other words, we want a map of the form

T (x, y) = (ax+ by, cx+ dy), T (1, 0) = (2, 2), T (0, 1) = (−1, 1);

i.e. T (x, y) = (2x − y, 2x + y). Quickly double-checking, we can see that if we take
any point (2x− y, 2x+ y) such that x2 + y2 = 1, we have that(

(2x− y)− (2x+ y)

2

)2

+

(
(2x− y) + (2x+ y)

4

)2

= y2 + x2 = 1;

so this map does indeed send points on the unit circle to the unit disk, as claimed.

So: now that we know how to change our coördinates, we can use this to integrate!
Specifically, we have that∫∫

R

x2dxdy =

∫∫
unit disk

x2
∣∣
T (x,y)

· det(D(T ))dxdy

=

∫∫
unit disk

(2x− y)2 · det

(
2 −1
2 1

)
dxdy

= 4

∫∫
unit disk

(2x− y)2dxdy

= 4

∫ 1

0

∫ 2π

0
(2r cos(θ)− r sin(θ))2rdrdθ

= 4

∫ 1

0

∫ 2π

0
r3(4 cos2(θ)− 4 cos(θ) sin(θ) + sin2(θ))drdθ

= 4

∫ 1

0

∫ 2π

0
r3(3 cos2(θ)− 2 sin(2θ) + 1)drdθ

= 4

∫ 1

0

∫ 2π

0
r3
(

3
1 + cos(2θ)

2
− 2 sin(2θ) + 1

)
drdθ

= 4

∫ 1

0

∫ 2π

0
r3
(

5

2
+

3 cos(2θ)

2
− 2 sin(2θ)

)
drdθ
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(Notice that we used a polar coördinate shift in this calculation, as well as some
applications of the double-angle formulas for sin and cos.) Because the integral of
sin(2x) or cos(2x) from 0 to 2π is zero (this is visually obvious, from inspecting the
graph of sin or cos), we can ignore these terms; therefore, our integral is just the
integral

∫ 1
0

∫ 2π
0 10r3drdθ, which is just 5π.

Similarly, you can calculate the integral
∫∫
R

1dxdy, or you can just remember the

formula for the area of a ellipse, πab where a, b are the lengths of the major and minor
axes, to see that this integral is π · ||(−1, 1)|| · ||(2, 2)|| = π ·

√
2 · 2
√

2 = 4π. Therefore,
our ratio is 5

4 .

2. Suppose that S is the upper sheet of the hyperboloid with two sheets

z2 − x2 − y2 = 1, z ∈ [1, 3],

depicted below:

z

x

y

Let F (x, y, z) = (−x,−y,−z) denote a vector field modelling a snowfall: i.e. at
any point (−x,−y,−z) in R3, F indicates the magnitude of snow flowing through
(−x,−y,−z), along with the direction it flows in.

Assume that F is denoting inches of snow accumulated per hour. How much snow
accumulates on our surface S in a hour: i.e. what is the total flow

∫∫
S

F · dS?

Solution. First, notice that because z is always greater than 0, we can solve for z
and express our surface as the collection of all points (x, y, z) such that

z =
√

1 + x2 + y2, z ∈ [1, 3].

In other words, we can parametrize our surface via the map

U(x, y) = (x, y,
√

1 + x2 + y2),

where we let x, y range over all values that keep the z-coördinate in [1, 3]. A perhaps
easier way to view this map is to use cylindrical coördinates (which the x2 + y2 term
suggests to us as a good idea): i.e. to instead use the parametrization

T (r, θ) = (r cos(θ), r sin(θ),
√

1 + r2),

3



where r ranges from 0 to 2
√

2 (as this lets z range from 1 to 3) and θ ranges from 0
to 2π.

If we do this, then we’re just asking for the integral∫∫
S

(x, y, z) · dS =

∫ 2π

0

∫ 2
√
2

0
(−r cos(θ),−r sin(θ),−

√
1 + r2) · (Tθ × Tr)drdθ,

where we’re calculating our flow through the surface with the orientation given by
(Tθ × Tr).
So: specifically, we have

(Tθ × Tr) = (−r sin(θ), r cos(θ), 0)×
(

cos(θ), sin(θ),
r√

1 + r2

)
=

(
r2 cos(θ)√

1 + r2
,
r2 sin(θ)√

1 + r2
,−r

)
,

which by plugging in r = 1, θ = 0 we can see is the normal that points “outwards”
from our hyperboloid cup / down along the z-axis.

If we plug in this normal into our integral, we get∫∫
S

(x, y, z) · dS =

∫ 2π

0

∫ 2
√
2

0
(−r cos(θ),−r sin(θ),−

√
1 + r2) ·

(
r2 cos(θ)√

1 + r2
,
r2 sin(θ)√

1 + r2
,−r

)
drdθ

=

∫ 2π

0

∫ 2
√
2

0

(
−r3 cos(θ)− r3 sin(θ)√

1 + r2
+ r
√

1 + r2
)
drdθ

=

∫ 2π

0

∫ 2
√
2

0

(
−r3√
1 + r2

+ r
√

1 + r2
)
dr

=2π

∫ 2
√
2

0

(
−r3√
1 + r2

+ r
√

1 + r2
)
drdθ

If we make the substitution u = 1 + r2, du = 2rdr, u− 1 = r2, we get that our integral
is just

π

∫ 9

1

(
−(u− 1)√

u
+
√
u

)
du = π

∫ 9

1

(
−
√
u+

1√
u

+
√
u

)
du

= π

∫ 9

1

1√
u
du

= 2π
√
u
∣∣∣9
1

= 4π.
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So we have 4π units of snow per hour that will flow through our surface with this
outward/downward pointing normal: in other words, 4π units of snow per hour will
accumulate in the top of our hyperboloid cup.

3. Let S be the surface given by taking the portion of the hyperboloid of one sheet

H1 = {(x, y, z) : x2 + y2 − z2 = 1}

contained by the sphere of radius 4, as depicted below:

z

x

y

Set up (but don’t calculate) an integral for the surface area of S.

Solution. So: our surface is the collection of all points (x, y, z) such that

x2 + y2 = 1 + z2, x2 + y2 ≤ 16− z2.

The intersection of this sphere and hyperboloid occurs when these two constraints
intersect: i.e. when we satisfy both x2 + y2 = 1 + z2 and x2 + y2 = 16 − z2. If we
solve for z, we can see that this forces 1 + z2 = 16− z2: i.e. z = ±

√
15/2. Therefore,

by solving for z, we can parametrize the top half of our surface S via the map

T (x, y) = (x, y,
√
x2 + y2 − 1),

where we restrict the z-coördinate to lie between 0 and
√

15/2. More simply, if we
use cylindrical coördinates, we have that this is just

T (r, θ) = (r cos(θ), r sin(θ),
√
r2 − 1),

where r ranges from 1 to
√

17/2 and θ ranges from 0 to 2π. Therefore, our integral
is just
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∫∫
S

1dS =

∫ 4

1

∫ 2π

0
1 · ||Tr × Tθ|| dθdr

=

∫ √17/2

1

∫ 2π

0

∣∣∣∣∣∣∣∣(cos(θ), sin(θ),
r√

r2 − 1

)
× (−r sin(θ), r cos(θ), 0)

∣∣∣∣∣∣∣∣ dθdr
=

∫ √17/2

1

∫ 2π

0

∣∣∣∣∣∣∣∣(−r2 cos(θ)√
r2 − 1

,−r
2 sin(θ)√
r2 − 1

, r

)∣∣∣∣∣∣∣∣ dθdr
=

∫ √17/2

1

∫ 2π

0

√
r4 cos2(θ)

r2 − 1
+
r4 sin2(θ)

r2 − 1
+ r2dθdr

=

∫ √17/2

1

∫ 2π

0

√
r4

r2 − 1
+ r2dθdr

= 2π

∫ √17/2

1
r

√
2r2 − 1

r2 − 1
dr.

Therefore, our area is just two times that quantity (because as noted above, we re-
stricted ourselves to looking at the top half in order to get an easier parametrization.)

4. Directly calculate the integral of F (x, y, z) = (3x2y,−3xy2, z) over the surface of the
unit cube, using the orientation depicted below. Then, use the divergence theorem to
calculate this in a much faster manner.

x

y

z

Solution. If we want to do this directly, break the unit cube into its six sides

[0, 1]× [0, 1]× {0}, [0, 1]× [0, 1]× {1},
[0, 1]× {0} × [0, 1], [0, 1]× {1} × [0, 1]

{0} × [0, 1]× [0, 1], {1} × [0, 1]× [0, 1],
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notice that the normals to these sides are precisely the normals (0, 0,±1), (0,±1, 0), (±1, 0, 0)
as depicted in the above diagram, and calculate∫∫

surface of cube

F · dS

=

∫ 1

0

∫ 1

0
F
∣∣
(x,y,0)

· (0, 0,−1)dxdy +

∫ 1

0

∫ 1

0
F
∣∣
(x,y,1)

· (0, 0, 1)dxdy

+

∫ 1

0

∫ 1

0
F
∣∣
(x,0,z)

· (0,−1, 0)dxdz +

∫ 1

0

∫ 1

0
F
∣∣
(x,1,z)

· (0, 1, 0)dxdz

+

∫ 1

0

∫ 1

0
F
∣∣
(0,y,z)

· (−1,−0, 0)dydz +

∫ 1

0

∫ 1

0
F
∣∣
(1,y,z)

· (1, 0, 0)dydz

=

∫ 1

0

∫ 1

0
0dxdy +

∫ 1

0

∫ 1

0
1dxdy +

∫ 1

0

∫ 1

0
0dxdz +

∫ 1

0

∫ 1

0
−3x dxdz

+

∫ 1

0

∫ 1

0
0dydz +

∫ 1

0

∫ 1

0
3ydydz

=1.

Alternately, if you use the divergence theorem, we can calculate this in a much faster
way: ∫∫

surface of cube

F · dS =

∫∫∫
cube

(divF )dV

=

∫ 1

0

∫ 1

0

∫ 1

0
(6xy − 6xy + 1)dxdydz

=

∫ 1

0

∫ 1

0

∫ 1

0
1dxdydz = 1.

5. Let c(t) =
(

cos(t)− sin2(t)
2 , cos(t) sin(t)

)
denote the “fish curve” drawn below:

-.5 .5 1-1

x

y
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Find the area contained within this curve.

Solution.

This looks like a textbook example of when to use the Green’s theorem formula for
the area contained in a curve. Specifically, Green’s theorem, as applied to finding
the area contained within a curve, says that if a region R is bounded by some simple
closed curve c(t) that is oriented positively (i.e. so that R is on the left as we travel
along c(t)), then

area(R) =

∫∫
R

1dxdy
Green’s theorem︷︸︸︷

= =
1

2

∫
c(t)

(−y, x) dc.

If we just plug in our curve, we get that this integral is

1

2

∫
c(t)

(−y, x) dc

=
1

2

∫ 2π

0

(
− cos(t) sin(t), cos(t)− sin2(t)

2

)
·
(
− sin(t)− sin(t) cos(t), cos2(t)− sin2(t)

)
dt

=
1

2

∫ 2π

0

(
cos(t) sin2(t) + cos2(t) sin2(t) + cos3(t)− cos(t) sin2(t)− cos2(t) sin2(t)

2
+

sin4(t)

2

)
dt

=
1

2

∫ 2π

0

(
cos2(t) sin2(t)

2
+ cos3(t) +

sin4(t)

2

)
dt

=
1

2

∫ 2π

0

(
sin2(2t)

8
+ cos(t)(1− sin2(t)) +

(1− cos(2t))2

8

)
dt

=
1

2

∫ 2π

0

(
1− cos(4t)

16
+ cos(t)(1− sin2(t)) +

1− 2 cos(2t) + cos2(2t)

8

)
dt

=
1

2

∫ 2π

0

(
1− cos(4t)

16
+ cos(t)(1− sin2(t)) +

1− 2 cos(2t)

8
+

1 + cos(4t)

16

)
dt

=
1

2

∫ 2π

0

(
1

4
+ cos(t)(1− sin2(t))− cos(2t)

4

)
dt

=
1

2

(
t

4
+ sin(t)− sin3(t)

3
− sin(2t)

8

) ∣∣∣2π
0

=π/4.

But is this plausible? Well: looking at our fish curve, it seems to contain at least (in
the head-part) the area of an ellipse from −.5 to 1 with y-height from −.5 to .5, which
is much greater than the area of a circle with radius .5, which is π/4. So: something
has gone wrong!

What, specifically? Well: to apply Green’s theorem, we needed a simple closed
curve that was positively oriented. Did we have that here? No! In fact, our curve
c has a self-intersection: c(2π/3) = c(4π/3), and in fact the tail part of our curve is
oriented negatively (i.e. if we travel around our curve from 2π/3 to 4π/3, our region
is on the right-hand side. In fact, we’ve calculated the area of the head minus the
area in the tail!
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To calculate what we want, we want to take the integral above evaluated from −π/2
to π/2 (the head) and then add the integral from 3π/2 to π/2 (travelling backwards
here makes it so that we get the right orientation on the tail. Specifically, we have

1

2

(
t

4
+ sin(t)− sin3(t)

3
− sin(2t)

8

) ∣∣∣π/2
−π/2

=
1

2

(
π

8
− −π

8
+ 1− (−1) + (−1

3
)− 1

3
+ 0− 0

)
=
π

8
+

4

3
,

while

1

2

(
t

4
+ sin(t)− sin3(t)

3
− sin(2t)

8

) ∣∣∣π/2
3π/2

=
1

2

(
−π

8
− π

8
+ 1− (−1) + (

−1

3
)− 1

3
+ 0− 0

)
=− π

8
+

4

3
;

therefore, our total area is π
8 + 4

3 +−π
8 + 4

3 = 8
3 .

6. Let S = {(x, y, z) : x2 + y2 + z2 = 1, x, y, z ≥ 0} and C+ = ∂S be the boundary of
S traversed in the counterclockwise direction from high above the z-axis, as depicted
below:

x

y

z

Let F (x, y, z) = (x4, y4, z4) be a vector field. Calculate
∫
C+ F · dc directly, then use

Stokes’s theorem to calculate it with much less effort.

Solution. To calculate this directly, first parametrize C as the three curves γ1, γ2, γ3,
where

γ1(t) = (cos(t), sin(t), 0),

γ2(t) = (0, cos(t), sin(t)),

γ3(t) = (sin(t), 0, cos(t)),
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and t ranges from 0 to π/2 for each curve.
Then, we’d have that∫

C
FdC =

3∑
i=1

∫ π/2

0
(F ◦ γi(t)) · (γ′(t))dt

=
3∑
i=1

∫ π/2

0
− cos4(t) sin(t) + sin4(t) cos(t)dt

= 3

∫ π/2

0
− cos4(t) sin(t) + sin4(t) cos(t)dt

=

(
−3

∫ π/2

0
cos4(t) sin(t)dt

)
+

(
3

∫ π/2

0
sin4(t) cos(t)dt

)

To evaluate these last two integrals, use the u-substitution u = cos(t) on the left and
u = sin(t) on the right: ∫

C
FdC =

(
3

∫ 0

1
u4dt

)
+

(
3

∫ 1

0
u4dt

)
=

(
−3

∫ 1

0
u4dt

)
+

(
3

∫ 1

0
u4dt

)
= 0.

Alternately, for a much faster solution, just use Stokes’ theorem, which tells us that the
integral of F over C is the integral of (∇× F ) · n over S. Then, because

curl(F ) = ∇× F =

((
∂F3

∂y
− ∂F2

∂z

)
,

(
∂F1

∂z
− ∂F3

∂x

)
,

(
∂F2

∂x
− ∂F1

∂y

))
= (0− 0, 0− 0, 0− 0)

= (0, 0, 0),

we know that (∇×F ) ·n is identically 0, and thus that the integral of this quantity over S
is also zero.
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