
Math 1c TA: Padraic Bartlett

Recitation 10: Final Review - Definitions

Week 10 Caltech 2012

The Ma1c final is focused on testing the material presented in the second half of this
course: in other words, it’s a ton of questions about integrals! This handout is an attempt to
summarize everything we’ve discussed about the integral in the second half of this quarter.

1. Types of integrals. We’ve learned how to take several kinds of integrals in this
course:

• “Normal” integrals. Given a region R ⊂ Rn, we know how to take the integral
of any function F : Rn → Rm over such a region by taking iterated integrals.
For example, if R is some sort of a n-dimensional box [a1, b1] × . . . [an, bn], we
can write

∫∫
R

FdV as the iterated integral∫ b1

a1

. . .

∫ bn

an

Fdxn . . . dx1.

Part of being able to do these integrals is the ability to describe a region R via
sets of nested parameters. For example, if R is the upper-right quadrant of the
unit disk

R = {(x, y) : x2 + y2 ≤ 1, 0 ≤ x, 0 ≤ y},

you should be able to describe R as the set of all points such that

x ∈ [0, 1], y ∈ [0,
√

1− x2],

and therefore notice that that we can express∫∫
R

f(x, y)dydx =

∫ 1

0

∫ √1−x2
0

f(x, y)dydx,

for some function f . Be able to do this “nested parameter” thing over most kinds
of regions: usually, the way you do this is by picking one variable, determining its
maximum range, then (for some fixed value of that first variable) pick a second
variable and determine its maximum range depending on the first variable, and
so on/so forth.

• Line integrals. Given a parametrized curve γ : [a, b] → Rn, we can find the
integral of either a vector field F : Rn → Rn or a scalar field f : Rn → R along
this curve. Specifically, we can express these integrals as the following:∫

γ
F · dγ =

∫ b

a
(F ◦ γ(t)) · (γ′(t))dt, and∫

γ
f dγ =

∫ b

a
(f ◦ γ(t))||γ′(t)||dt.
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• Surface integrals. Given a parametrized surface S with parametrization T :
R→ S, R ⊆ R2, we can find the integral of any function f : Rn → R over S, as
well as the integral of any vector field F : Rn → Rn over S. Specifically, we can
express the integral of f over S as the following two-dimensional integral over R:∫∫

S

fdS =

∫∫
R

(f ◦ T (u, v)) · ||Tu × Tv|| dudv.

As well, recall that a unit normal vector to our surface, n, can be given by the
formula

n =
(Tu × Tv)
||Tu × Tv||

or
(Tv × Tu)

||Tv × Tu||

up to the orientation of n: i.e. depending on whether we look at (Tu × Tv) or
(Tv × Tu), we will get either n or −n. Choosing an orientation for our surface S
is simply choosing which of these two choices of normal vectors we will make for
our entire integral: whenever we ask you to integrate a vector field over a surface,
we will tell you what orientation you should pick (i.e. by asking you to orient S
so that “the normals point away from the origin,” or something like that.) Once
you’ve fixed an orientation, say the Tu× Tv one, we define the integral of F over
S as the following integral:∫∫

S

F · dS =

∫∫
S

F · ndS =

∫∫
R

(f ◦ T (u, v)) · (Tu × Tv)
||Tu × Tv||

· ||Tu × Tv|| dudv

=

∫∫
R

(f ◦ T (u, v)) · (Tu × Tv) dudv.

The trickiest thing going on here is “how” you choose your parametrization. For
finding a parametrization of a surface S, you can usually do one of the following
two things:

– Often, if you describe your surface S in cylindrical or spherical coördinates,
you’ll see that one of the coördinates you’re describing your surface in is con-
stant. For example, a spherical shell of radius 3 can be described in spherical
coördinates as the set of all point (3, θ, φ), where θ ∈ [0, 2π], φ ∈ [0, π]. In
this kind of situation, our parametrization is just using this coördinate sys-
tem with the constant variable treated as a constant: i.e. for the spherical
shell of radius 3, our parametrization is just

T (θ, φ) = (3 cos(θ) sin(φ), 3 sin(θ) sin(φ), 3 cos(φ)),

where θ ∈ [0, 2π], φ ∈ [0, π].
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– If this doesn’t work out, the other tactic that’s often useful is finding an
equation that describes your surface, and solving for one of the variables in
terms of the others. For example, suppose that we’re looking at the surface
S given by the upper sheet of the hyperboloid of two sheets between heights
1 and 2: i.e.

S = {(x, y, z) : −x2 − y2 + z2 = 1, z ∈ [1, 2]}.

In this case, because z is positive, we can solve for z in terms of the other
variables, and express S as

S = {(x, y, z) : z =
√

1 + x2 + y2, z ∈ [1, 2]}.

We can then use this to formulate a parametrization of S: simply let x and
y range over the possible values that keep z between 1 and 2, and then set
z =

√
1 + x2 + y2:

T (x, y) = (x, y,
√

1 + x2 + y2), x ∈ [−
√

3,
√

3], y ∈ [−
√

3− x2,
√

3− x2].

You can of course combine these two approaches: for example, if we were
to use cylindrical coördinates on our surface S above and replace x with
r cos(θ), y with r sin(θ), we can see that we can easily express T instead as
the map

T (r, θ) = (r cos(θ), r sin(θ),
√

1 + r2), r ∈ [0,
√

3], θ ∈ [0, 2π],

which may be easier to work with.

2. Tools for evaluating integrals. Throughout Ma1c, you’ve ran into many integrals
of the above kinds that were difficult or impossible to directly evaluate. Motivated
by these problems, we developed a number of theorems and tools about integration,
which we repeat here:

• Green’s theorem. There are a number of forms of Green’s theorem; we state
the simpler and most commonly used version here. Suppose that R is a region
in R2 with boundary ∂R given by the simple closed curve C, and suppose that γ
is a traversal of C in the counterclockwise direction. Suppose as well that P and
Q are a pair of C1 functions from R2 to R. Then, we have the following equality:∫∫

R

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫
γ

(Pdx+Qdy) .

• Stokes’ theorem. Stokes’ theorem, quite literally, is Green’s theorem for sur-
faces in R3 (as opposed to restricting them to lying in the plane R2.) Specifically,
it is the following claim: suppose that S is a surface in R3 with boundary ∂S
given by the simple closed curve C, suppose that n is a unit normal vector to S
that gives S some sort of orientation, and suppose that γ is a traversal of C such
that the interior of S always lies on the left of γ’s forward direction, assuming
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that we’re viewing the surface such that the normal vector n is pointing towards
us. Suppose as well that F is a vector field from R3 to R3. Then, we have the
following equality: ∫∫

S

(∇× F ) · n dS =

∫
γ
Fdγ.

In general, you use Green’s and Stokes’s theorems whenever you have a integral
of a function over an awful curve (and taking derivatives to work with your
function over a region, which is what the curl does, will make things easier), or
you have an integral of a curl-like function over an awful region (and working on
the curve would make things easier.)

• Divergence/Gauss’s theorem. Let W be a region in R3 with boundary given
by some surface S, let n be the outward-pointing (i.e. away from W ) unit normal
vector to S, and let F be a smooth vector field defined on W . Then∫∫∫

W

(div(F ))dV =

∫∫
∂W

(F · n)dS.

Again, use this like you would use Green’s and Stokes’s theorems.

• Change of variables. A common tactic to make integrals easier is to apply
the technique of change of variables, which allows us to describe regions in Rn
using coördinate systems other than the standard Euclidean ones. In general,
the change-of-variables theorem says the following:

– Suppose that R is an open region in Rn, g is a C1 map Rn → Rn on an
open neighborhood of R, and that f is a continuous function on an open
neighborhood of the region g(R). Then, we have∫

g(R)
f(x)dV =

∫
R
f(g(x)) · det(D(g(x)))dV.

Specifically, the three most common change-of-variable choices are transitions
to the polar, cylindrical, and spherical coördinate systems, which we review
here:

– Polar coördinates. Suppose that R is a region in R2 described in polar
coördinates: i.e. there is some set A ⊆ [0,∞)× [0, 2π) such that γ(A) = R,
where γ is the polar coördinates map (r, θ) 7→ (r cos(θ), r sin(θ)). Then, for
any integrable function f : R2 → R, we have∫∫∫

γ(A)

f(x, y)dV =

∫∫∫
A

f(r cos(θ), r sin(θ)) · r dV.

– Cylindrical coördinates. Suppose that R is a region in R3 described in
cylindrical coördinates: i.e. there is some set A ⊆ [0,∞)× [0, 2π)× (−∞,∞)

4



such that γ(A) = R, where γ is the cylindrical coördinates map (r, θ, z) 7→
(r cos(θ), r sin(θ), z). Then, for any integrable function f : R3 → R, we have∫∫∫

γ(A)

f(x, y)dV =

∫∫∫
A

f(r cos(θ), r sin(θ), z) · r dV.

– Spherical coördinates. Suppose that R is a region in R3 described in
spherical coördinates: i.e. there is some set A ⊆ [0,∞) × [0, 2π) × [0, π)
such that γ(A) = R, where γ is the spherical coördinates map (r, θ, ϕ) 7→
(r sin(ϕ) cos(θ), r sin(ϕ) sin(θ), r cos(ϕ)). Then, for any integrable function
f : R3 → R, we have∫∫∫
γ(A)

f(x, y)dV =

∫∫∫
A

f(r sin(ϕ) cos(θ), r sin(ϕ) sin(θ), r cos(ϕ)) · r2 sin(ϕ) dV.

One of the trickiest things to do with change of variables is deciding which
coördinate system to use on a given set. For example, consider the following five
shapes:

cyl sphcyl cyl sph

To describe the cone, sphere cap, or torus above, cylindrical coördinates are
probably going to lead to the easiest calculations. Why is this? Well, all three of
these shapes have a large degree of symmetry around their z-axis; therefore, we’d
expect it to be relatively easy to describe these shapes as a collection of points
(r, θ, z). However, these shapes do *not* have a large degree of rotational symme-
try: in other words, if we were to attempt to describe them with the coördinate
(r, θ, ϕ), we really wouldn’t know where to begin with the ϕ coördinate.

However, for the ellipsoid and “ice-cream-cone” section of the ellipsoid, spherical
coördinates are much more natural: in these cases, it’s fairly easy to describe
these sets as collections of points of the form (r, θ, ϕ).

In general, if you’re uncertain which of the two to try, simply pick one and see
how the integral goes! If you chose wisely, it should work out; otherwise, you can
always just go back and try the other coördinate system.

3. Applications of the integral. Finally, it bears noting that we’ve developed a few
applications of the integral to finding volume, surface area, length, and centers of
mass. We review these here:

• Volume, surface area, and length. If you have a solid V , a surface S, or a
curve C, you can find the volume/area/length of your object by integrating the
function 1 over that object.
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• Area, via Green’s theorem. If you have a region R ⊂ R2 with boundary
given by the counterclockwise-oriented curve γ, you can use Green’s theorem to
find its area as a line integral. Specifically, notice that if F (x, y) =

(
−y

2 ,
x
2

)
, we

have ∂F2
∂x −

∂F1
∂y = 1, and therefore that Green’s theorem says that∫∫

R

1 dA =

∫
γ

(
−y

2
,
x

2

)
dγ.

• Center of mass. Suppose that an object A (a curve, surface, or solid) has
density function δ(x). Then, the xi-coördinate of its center of mass is given by
the ratio ∫

A

xiδ(x) dA∫
A

δ(x) dA
.

This is pretty much everything we’ve covered in the second half of our course with
respect to the integral! The only other topic we’ve discussed since the midterm are the
operations of div and curl, which we quickly review here:

1. Div and curl: definitions. Given a C1 vector field F : R3 → R3, we can defind the
divergence and curl of F as follows:

• Divergence. The divergence of F , often denoted either as div(F ) or ∇ · F , is
the following function R3 → R:

div(F ) = ∇ · F =
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
.

• Curl. The curl of F , denoted curl(F ) or ∇×F , is the following map R3 → R3:

curl(F ) = ∇× F =

((
∂F3

∂y
− ∂F2

∂z

)
,

(
∂F1

∂z
− ∂F3

∂x

)
,

(
∂F2

∂x
− ∂F1

∂y

))
.

Often, the curl is written as the “determinant” of the following matrix:

det


i j k

∂
∂x

∂
∂y

∂
∂z

F1 F2 F3


2. Theorems. We have a pair of rather useful theorems about the divergence and curl

of functions, which we state here:

• For any C2 function F , div(curl(F )) is always 0.
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• For any C2 function F , curl(grad(F )) is always 0.

These theorems are a pair of very useful tests that can often tell us that a given
function F is not a conservative vector field (i.e. a gradient) or a curl of some other
function. For example, if we examined the function F (x, y, z) = (x, y, z), we can
immediately tell that F is not the curl of some other function because its divergence
is 1 + 1 + 1 6= 0.
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