
Math 1c TA: Padraic Bartlett

Recitation 9: Integrals on Surfaces; Stokes’ Theorem

Week 9 Caltech 2011

1 Random Question

In the diagram below, we illustrate how to “glue together” the sides of a square to create a
torus:

Basically, what we’ve done here is taken the two blue-arrow edges and stuck them together
so that when they’re pressed together, their arrows are pointing in the same direction;
then, we did the same thing with the two red-arrow edges. (Try this with some paper to
see what’s going on!)

So: what other shapes can you get? Specifically:

1. What other shapes can you make out of the square, by identifying edges in different
ways? Can you make the Klein bottle? Möbius strip1? Sphere?

2. How about a hexagon? Can you make a torus out of that? Any new shapes?

3. Suppose you use a 4k-gon, instead of just a square. Can you make a k-hole torus –
that is to say, a surface with k holes in it?

2 Surfaces

2.1 Basic definitions.

What is a surface? Well, to get an idea of what we might want one to be, let’s examine
several things we want to be surfaces: spheres, tori, cones, paraboloids, sheets, cubes, and
the graphs of continuous functions z = f(x, y). What do these all have in common? Well,
intuitively speaking, they all look like they are in some sense locally flat – i.e. they look
like they’re made out of pieces of R2. For example, if you pick a point on a sphere, say, and
zoom in really close, it basically looks identical to R2 there, and the same holds for the rest
of our surfaces.

As it turns out, this notion, of “locally looking like R2,” is an excellent candidate for
the definition of a surface. In the following definition, we make this notion rigorous:

1If you haven’t heard of these shapes before, go read about them on Wikipedia! They’re quite cool.
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Definition. A subset S ⊆ Rn is called a surface without boundary if for every point
s ∈ S, there is an open neighborhood Ns of s and a continuous, 1-1 and onto function ϕ
from the open unit disk D = {(x, y) : x2 + y2 < 1} in R2 to the set Ns ∩ S. In other words,
for every point s in S, there is a little neighborhood of s in which S locally looks like R2.

Similarly, a surface S ⊆ Rn is called a surface with boundary if for every point s ∈ S,
we have one of the following two cases:

1. There is an open neighborhood Ns of s and a continuous, 1-1 and onto function
ϕ1 : {(x, y) : x2 + y2 < 1, y ≥ 0} → Ns. In this case, s is a boundary point of S.

2. There is an open neighborhood Ns of s and a continuous, 1-1 and onto function
ϕ2 : D→ Ns. In this case, s is an interior point of S.

One, somewhat frustrating thing about this definition is that it only gives us these maps
ϕ locally. However, there are many situations where we’d like to have just one map ϕ that
makes everything on our surface S look like R2, instead of a ton of different little maps for
every point in S! This motivates the following definition:

Definition. We say that S is a surface parametrized by ϕ iff there is a path-connected
region R ⊂ R2 and continuous onto function ϕ : R → S, that’s one-to-one except perhaps
on the boundary points of R.
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This definition is perhaps best illustrated by a series of examples of parametrized sur-
faces:

Example. A cone of height h and radius r around the z-axis, as depicted below, can be
parametrized by the map ϕ : [0, h]× [0, 2π]→ R3, ϕ(z, θ) =

(
z·r
h cos(θ), z·rh sin(θ), z

)
.

If you want to double-check this, simply use cylindrical coördinates to see that the image
of the set above is indeed a cone!

Example. A ellipsoid that intersects the x-axis at a, y-axis at b, and z-axis at c, as
depicted below, can be parametrized by the map ϕ : [0, π] × [0, 2π] → R3, ϕ(φ, θ) =
(a sin(φ) cos(θ), b sin(φ) sin(θ), c cos(φ)).

Similarly to the above, you can double-check that this is valid by using spherical coördinates.
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Example. A torus around the circle x2 + y2 = R2, with internal radius r (as depicted
below) can be parametrized by the map ϕ : [0, 2π]× [0, 2π]→ R3, with
ϕ(φ, θ) = (cos(φ)(R+ r cos(θ)), sin(φ)(R+ r cos(θ)), r sin(θ)).

Example. The pseudosphere is a strange surface, that in several senses can be thought of
as a natural complement to the idea of a sphere. In a sense we will define in future Caltech
math courses, it has curvature−1 everywhere (as opposed to the sphere, which has curvature
1 everywhere;) as well, it has the same surface area (4πr2) as a sphere, and half of the
volume (2πr3/3) of the sphere. It is parametrized by the map ϕ : (−∞,∞)× [0, 2π]→ R3,
ϕ(t, θ) = (sech(t) cos(θ), sech(t) sin(θ), t− tanh(t)), where the expressions sech and tanh are

the hyperbolic trig functions sech(t) = 2
et+e−t , tanh(t) = et−e−t

et+e−t .
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2.2 Integrals on surfaces.

As this is a calculus class, the natural question to ask (when given any new object) is “How
can we take integrals with this?” In other words, suppose we have a surface S ⊂ R3, and
some function f : R3 → R. What would we possibly mean by the integral of f on S?

Well: suppose for the moment that f is parametrized by some function ϕ : R → S,
R ⊆ R2. Then, one natural way to define the integral of f over S is to say that it is the
integral of f ◦ ϕ over R, where we need to compensate for how ϕ “stretches areas.” To be
explicit, we have the following definition:

Definition. For a surface S ⊂ R3 parametrized by some function ϕ(x, y) : R→ S, R ⊆ R2

and some function f : R3 → R, we define the integral of f over S as the following
expression: ∫∫

S

f dS =

∫∫
R

f(ϕ(x, y)) ·
∣∣∣∣∣∣∣∣∂ϕ∂x × ∂ϕ

∂y

∣∣∣∣∣∣∣∣ dxdy.
The

∣∣∣∣∣∣∂ϕ∂x × ∂ϕ
∂y

∣∣∣∣∣∣ bit above, specifically, is the thing that corrects for how ϕ distorts space.

Specifically, at any point (x, y), it’s distorting space by ∂ϕ
∂x as you increase x slightly and by

∂ϕ
∂y as you increase y: therefore, it’s distorting area by the magnitude of the cross-product
of those two vectors at that point!

2.3 Example calculations.

To demonstrate how these concepts work, we calculate two examples:

Example. Calculate the surface area of a cone C with height 1 and radius 1 (using the
height and radius notation from our earlier parametrizations.)

Solution. (First, note that the surface area of any surface S is just the integral of the
function 1 over the entire surface: therefore, this problem is just asking us to find

∫∫
S

1 dS.

Let ϕ : [0, 1]× [0, 2π]→ R3, ϕ(z, θ) = (z cos(θ), z sin(θ), z) be the parametrization of the
cone we discussed earlier in recitation. Then, by definition, we have that∫∫

C

1 dS =

∫ 1

0

∫ 2π

0
1 ·
∣∣∣∣∣∣∣∣∂ϕ∂z × ∂ϕ

∂θ

∣∣∣∣∣∣∣∣ dθdz
=

∫ 1

0

∫ 2π

0
1 · ||(cos(θ), sin(θ), 1)× (−z sin(θ), z cos(θ), 0)|| dθdz

=

∫ 1

0

∫ 2π

0

∣∣∣∣(−z cos(θ),−z sin(θ), z cos2(θ) + z sin2(θ))
∣∣∣∣ dθdz
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=

∫ 1

0

∫ 2π

0
||(−z cos(θ),−z sin(θ), z)|| dθdz

=

∫ 1

0

∫ 2π

0

√
(−z cos(θ))2 + (z sin(θ))2 + z2dθdz

=

∫ 1

0

∫ 2π

0

√
z2 cos2(θ) + z2 sin2(θ)2 + z2dθdz

=

∫ 1

0

∫ 2π

0

√
2z2dθdz

=

∫ 1

0

∫ 2π

0
z
√

2dθdz

=

∫ 1

0
2πz
√

2dz

= π
√

2.

Example. Find the center of mass of a cone C centered on the z-axis of height 1 and radius
1, if it has uniform area density 1 (i.e. its area density function is γ(x, y, z) = 1.)

Solution. (Recall that a center of mass for any object is a point (x, y, z) such that any
plane cutting through (x, y, z) will have half of the object’s mass on either side of this plane.
Also, recall that we can find this by finding the average of each of the coördinates x, y, z over
this surface, weighted by the density function γ(x, y, z): in other words, the x-coördinate
of the center of mass of any surface with density function γ is just the quantity

∫∫
S

x · γdS

divided by the total mass of S,
∫∫
S

γdS.

First, notice that any such cone centered on the z-axis must have the x- and y-coördinates
of its center of mass both be zero, as this cone is symmetric around the x- and y-axes.

So, it suffices to find the z-coördinate of the center of mass of our cone. To do this,
because our density function is identically 1, we just need to find the integral∫∫

C

zγ dS =

∫∫
C

z dS

and divide it by the total mass of the cone,∫∫
C

γ dS =

∫∫
C

1 dS = π
√

2

(from our above calculations.)

Using the definition of the integral, and our earlier calculation that
∣∣∣∣∣∣∂ϕ∂z × ∂ϕ

∂θ

∣∣∣∣∣∣ = z
√

2,
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we have that ∫∫
C

z dS =

∫ 1

0

∫ 2π

0
z ·
∣∣∣∣∣∣∣∣∂ϕ∂z × ∂ϕ

∂θ

∣∣∣∣∣∣∣∣ dθdz
=

∫ 1

0

∫ 2π

0
z2
√

2dθdz

=

∫ 1

0
2πz2

√
2dz

= 2π
√

2/3.

So, the z-coördinate of our center of mass is just

2π
√

2/3

π
√

2
= 2/3.

So, if you have a right cone with uniform density (say, you made your cone out of paper),
and you puncture it about 2/3-rds of the way up with a pencil or dowel or somesuch thing,
it should spin freely about that axis, as its weight is equally distributed on all sides.

2.4 Stokes’ theorem.

Stokes’ theorem, roughly speaking, is Green’s theorem for surfaces. Explicitly, it’s the
following statement:

Theorem 1 (Stokes’ theorem) Suppose that S is a bounded surface2 with boundary given by
the counterclockwise-oriented curve C, and F : R3 → R3 is some continuously differentiable
function. Then, we have the following equality:∫∫

S

((∇× F ) · n) dS =

∫
C
F · ds,

where (as always) n denotes the unit normal vector at any point on S. (It bears noting that
if we have a parametrization ϕ of our surface S, we can explicitly write this vector n as
∂ϕ
∂x ×

∂ϕ
∂y /

∣∣∣∣∣∣∂ϕ∂x × ∂ϕ
∂y

∣∣∣∣∣∣.)
In practice, we use Stokes’ theorem in pretty much all of the same cases that we use

Green’s theorem:

• Turning integrals of functions over really awful curves into integrals of curls of func-
tions over surfaces. Often, this process of taking a curl will make our function 0 or at
the least quite trivial.

• Turning integrals of really awful functions over some curve into integrals of curls
(which will sometimes become much simpler, because you’re taking derivatives) over
some region.

2A set S is called bounded if there is some n such that ||s|| < n, for all s ∈ S
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• If you’re integrating something of the form (∇×f) ·n over a surface, you can of course
go backwards, which will often make life easier (as finding the curl of f and the unit
normal vector will usually be a fairly obnoxious process.) In practice, this might not
come up too often, as it’s not always obvious when a given expression is a curl, or the
dot product of a curl with a normal vector; so don’t look for this unless you’re really
stuck, or the problem explictly gives you your function in the form (∇× f) · n.

To illustrate how this goes, we work an example:

Example. If F (x, y, z) = (−xy2, x2y, z) and S is the sphere cap {(x, y, z) : x2 + y2 + z2 =
25, z ≥ 4}, find the integral of (∇× F ) · n over S.

Solution. As you have probably noticed in the past few HW’s, sphere caps are kind of
pernicious things. So, instead of integrating over this one, let’s use Stokes’ theorem to
instead integrate along its boundary!

Specifically: the sphere cap above has boundary

∂S = {(x, y, z) : x2 + y2 + z2 = 25, z = 4} = {(x, y, z) : x2 + y2 = 32, z = 4},

which is traversed in the counterclockwise direction by the curve γ(θ) = (3 cos(θ), 3 sin(θ), 4).
So, we can use Stokes’ theorem to say that∫∫
S

(∇× F ) · ndS =

∫
C
Fdc

=

∫ 2π

0
(−xy2, x2y, z)

∣∣∣∣∣
γ(θ)

· γ′(θ)dθ

=

∫ 2π

0
(−27 cos(θ) sin2(θ), 27 cos2(θ) sin(θ), 4) · (−3 sin(θ), 3 cos(θ), 0)dθ

=

∫ 2π

0
81 cos(θ) sin3(θ) + 81 cos3(θ) sin(θ)dθ

=

∫ 2π

0
81 cos(θ) sin(θ)(sin2(θ) + cos2(θ))dθ

=

∫ 2π

0
81 cos(θ) sin(θ)dθ

=

∫ 2π

0

81 sin(2θ)

2
dθ

= 0.

8


	Random Question
	Surfaces
	Basic definitions.
	Integrals on surfaces.
	Example calculations.
	Stokes' theorem.


