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Recitation 3: Derivatives: Tools and Applications

Week 3 Caltech 2011

1 Random Question

Hopefully, in class or Apostol, you’ve seen a function f : R2 → R such that its mixed

partials ∂2f
∂x∂y and ∂2f

∂y∂x exist on all of R2, but at some point – say (0,0) – these two partials
disagree, i.e.

∂2f

∂x∂y

∣∣∣∣∣
(0,0)

6= ∂2f

∂y∂x

∣∣∣∣∣
(0,0)

.

(One such function is f(x, y) = xy3−x3y
x2+y2

for (x, y) 6= (0, 0) and 0 for (x, y) = (0, 0), in case

you haven’t seen this.)
Can you find a version of this function where all of the partials of higher orders exist,

but are unequal? In other words,can you find a function f : R2 → R such that it has its

mixed partials ∂2nf
∂nx∂ny and ∂2nf

∂ny∂nx on all of R2, but at the origin these two mixed partials
disagree?

Relevant theorems and definitions:

• A function is called Ck(U), or Ck on some set U , iff all of its k-th order partial
derivatives1 are continuous on U . If the set U is unstated, assume that it’s the entire
domain of definition for your function (so, usually Rn.)

• There is a theorem that says that if a function is differentiable, it must be continuous
(this is not hard to show, if you want!)

• As well, there is a theorem that says if a function is Ck, it doesn’t matter in which

order you take its partials – i.e. ∂kf
∂xi1

...∂xik
= ∂kf

∂xi′1
...∂xi′

k

, for any two orderings i1, . . . ik

and i′1, . . . i
′
k of the same set of numbers.

So, rephrased in this way, you want a function that is C2n−1, not in C2n, such that ∂2nf
∂nx∂ny 6=

∂2nf
∂ny∂nx at the origin.

2 The Derivative, Take 2

2.1 Derivatives of functions from Rn → Rm

Due to the sheer bulk of the material we have to cover in this lecture, we’re going to kind
of skip around a bit in our talk; our theme today is the derivative, but we’re covering three

1A k-th order partial derivative of a function f is simply the function resulting from taking k partial

derivatives of f . E.g: ∂2f
∂x∂y

is a second-order partial derivative.
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slightly disjoint subjects here – the derivative in higher dimensions, the chain rule, and how
to use derivatives to find extrema.

So: we start by first definining the derivative of a function from Rn to Rm. From last
lecture, recall that for the simpler case of a function f : Rn → R1, we said that

1. The partial derivative of f at some point a with respect to its i-th coördinate is
the derivative of f at a if you hold all other coördinates constant and treat it as a
single-variable function: equivalently, it is the limit

lim
h→0

f(a + h · ei)− f(a)

h
.

2. The total derivative of f at some point a is a linear map Ta : Rn → R1 – in other
words, a 1×n matrix – such that it was a “linear approximation” of f close to a. I.e.

lim
||h||→0

f(a + h)− f(a)− Ta · h
||h||

= 0.

Our definitions for a higher-dimensional function are almost identical. Specifically: in
coming up with our definition of a partial derivative of f , we simply studied the ratio of
(small changes in f(x) in the i-th coördinate)/(small changes in the i-th coördinate). For
a higher dimensional function, we can do precisely the same thing, and write that for a
function f : Rn → Rm, the i-th partial derivative of f is just

lim
h→0

f(a + h · ei)− f(a)

h
,

where the result of this limit will be vector-valued. Equivalently, we can also write that

∂f

∂xi
=

(
∂f1
∂xi

, . . .
∂fm
∂xi

)
,

where each fi is the function Rn → R given by f ’s i-th coördinate.
Similarly, for the total derivative, we want Ta to again be a “linear approximation” to

f . However, this time, this means that we want Ta to be a function Rn → Rm – i.e. a m×n
matrix – because we want it to have the same inputs and outputs as f . Therefore, to say
that any such Ta is a close approximation to f around a, we need to require that

lim
||h||→0

||f(a + h)− f(a)− Ta · h||
||h||

= 0,

where we have to take the magnitude of the numerator in this limit because it is now
vector-valued, just as before.

Again, as before, we have the following two theorems relating the partial and total
derivatives:
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Theorem 1 If a function f : Rn → Rm has a total derivative Ta at some point, then this

total derivative is given by the matrix of partial derivatives D(f)
∣∣∣
a
. In other words, if Ta

exists, we have

Ta = D(f)
∣∣∣
a

:=


∂f1
∂x1

∣∣∣
a

. . . ∂f1
∂xn

∣∣∣
a

...
. . .

...
∂fm
∂x1

∣∣∣
a

. . . ∂fm
∂xn

∣∣∣
a


Theorem 2 If all of its first-order partials of a function f : Rn → Rm exist and are
continuous in a small ball around some point a – i.e. f is C1 in a ball around a – then Ta
exists.

To illustrate how these derivatives are calculated, we do one quick example:

Example. Find the total derivative of the function f : R→ R2 given by

f(t) = (cos(t) · (1 + cos(4t) + sin(2t)) , sin(t) · (1 + cos(4t) + sin(2t))) .

How is this function changing at t = 0?

Solution. Before we start, notice two things about this function:

• Because it’s a function R→ Rn, it’s a parametric curve – i.e. its graph is going to
look like some sort of a curve drawn in n-space (where n is 2 in our case.)

• In specific, it’s a parametric curve of the form (cos(t) ·r(t), sin(t) ·r(t), where we define
r(t) as the function (1 + cos(4t) + sin(2t)). So, recalling how polar coördinates work,
we can see that our function is really the graph of the function r(t) regarded in polar
coördinates! In other words, it’s the function

(which you may remember from Ma1a!)
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So: to find this function’s total derivative, we merely need to find D(f), which we do
by taking derivatives of f ’s first and second coördinates one at a time:

D(f) =

[ ∂f1
∂t
∂f2
∂t

]
=

[
− sin(t) · (1 + cos(4t) + sin(2t)) + cos(t) · (−4 sin(4t) + 2 cos(2t))

cos(t) · (1 + cos(4t) + sin(2t)) + sin(t) · (−4 sin(4t) + 2 cos(2t))

]
.

As both of these partial derivatives are continuous on all of R, we know that our function
is C1(R) and thus that it has a total derivative on all of R, given by the above matrix. In
particular, at t = 0, we have that

T0(f) =

[
− sin(0) · (1 + cos(0) + sin(0)) + cos(0) · (−4 sin(0) + 2 cos(0))

cos(0) · (1 + cos(0) + sin(0)) + sin(0) · (−4 sin(0) + 2 cos(0))

]
. =

[
2

cos(0) · 2

]
,

and thus that at time t = 0, our function is increasing equally in both the x and y directions
at a rate equal to twice that of t.

2.2 Tools for taking derivatives

Switching gears somewhat, we now turn from the theory of derivatives to a more practical
approach – how do we calculate these things? For functions R1 → R1, in particular, we had
things like the product and chain rule; are there analogues for functions Rn → Rm?

Well: yes! Kind-of. The product rule is kind of tricky, as there isn’t a single well-defined
notion of “product” to use. However, if we take two functions f, g : Rn → Rm, and assume
that by product we mean the dot product, then we have a version of the product rule,
that you used on your last HW:

∇(f · g)
∣∣∣
a

= f(a) · (∇g)
∣∣∣
a

+ g(a) · (∇f)
∣∣∣
a
.

The chain rule, however, is pretty clear-cut, as there’s only one way to define composi-
tion! Specifically, take any function g : Rm → Rl, and any function f : Rn → Rm. Then,
the chain rule says the following thing about the matrix of derivatives D(g ◦ f) of g ◦ f at
a point a ∈ Rn:

D(g ◦ f)
∣∣∣
a

= D(g)
∣∣∣
f(a)
·D(f)

∣∣∣
a
.

One interesting/cautionary tale to notice from the above calculations is that the partial
derivative of g ◦ f with respect to one variable xi can depend on many of the variables and
coördinates in the functions f and g!

I.e. something many first-year calculus students are tempted to do on their sets is to
write

∂(g ◦ f)i
∂xj

∣∣∣
a

=
∂gi
∂xj

∣∣∣
f(a)
· ∂fi
∂xj

∣∣∣
a
.

DO NOT DO THIS. Do not do this. Do not do this. Ever. Because it is wrong. Indeed,

if you expand how we’ve stated the chain rule above, you can see that ∂(g◦f)i
∂xj

∣∣∣
a

– the (i, j)-th
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entry in the matrix D(g ◦ f) – is actually equal to the i-th row of D(g)
∣∣∣
f(a)

multipled by

the j-th column of D(f)
∣∣∣
a

– i.e. that

∂(g ◦ f)i
∂xj

∣∣∣
a

=

[
∂gi
∂x1

∣∣∣
f(a)

. . . ∂gi
∂xm

∣∣∣
f(a)

]
·


∂f1
∂xj

∣∣∣
a
...

∂fm
∂xj

∣∣∣
a

 .
Notice how this is much more complex! In particular, it means that the partials of g ◦ f
depend on all sorts of things going on with g and f , and aren’t restricted to worrying about
just the one coördinate you’re finding partials with respect to.

The moral here is basically if you’re applying the chain rule without doing a *lot* of
derivative calculations, you’ve almost surely messed something up. So, when in doubt, just
find the matrices D(f) and D(g)!

We work one example, to illustrate how to do these kinds of calculations:

Example. If f(x) = (x, x2, x3) and g(x) = sin(xyz), use the chain rule to find D(g ◦ f)
∣∣∣
a
.

Solution. If we straightforwardly apply the chain rule, we have that

D(g ◦ f)
∣∣∣
a

= D(g)
∣∣∣
f(a)
·D(f)

∣∣∣
a

=

[
∂g
∂x

∣∣∣
f(a)

∂g
∂y

∣∣∣
f(a)

∂g
∂z

∣∣∣
f(a)

]
·


∂f1
∂x

∣∣∣
a

∂f2
∂x

∣∣∣
a

∂f3
∂x

∣∣∣
a



=

[
yz · cos(xyz)

∣∣∣
(a,a2,a3)

xz · cos(xyz)
∣∣∣
(a,a2,a3)

xy · cos(xyz)
∣∣∣
(a,a2,a3)

]
·


1
∣∣∣
a

2x
∣∣∣
a

3x2
∣∣∣
a


=
[
a5 · cos(a6) a4 · cos(a6) a3 · cos(a6)

]
·

 1
2a
3a2


= a5 · cos(a6) + 2a5 · cos(a6) + 3a5 · cos(a6)

= 6a5 · cos(a6).

As a quick sanity check, we can verify that this makes sense by just looking at the
function g ◦ f directly: g ◦ f(x) = sin(x · x2 · x3) = sin(x6), and therefore (g ◦ f)′(a) =
6a5 · cos(a6) by applying the one-dimensional version of the chain rule.
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2.3 Applications: Extrema

Changing gears once again, we now turn to one of the classical applications of the derivative:
finding extremal points!

Specifically, we have the following definitions, for a function f : Rn → R:

Definition. A point a ∈ Rn is called a local maxima of a function f : Rn → R iff there is
some small value r such that for any point x in Ba(r) not equal to a, we have f(x) ≤ f(a).

A similar definition holds for local minima.

So: how can we use the derivative to find such local maxima? Well, it’s clear that (if
our function is differentiable in a neighborhood around this point) that no matter how we
move to leave this point, our function must not increase – in other words, for any direction
v ∈ Rn, the directional derivative f ′(a,v) must be ≤ 0. But this means that in fact all of
the directional derivatives must be equal to 0!, because if f ′(a,v) was < 0, then f ′(a,−v)
would be > 0.

This motivates the following definitions, and basically proves the following theorem:

Definition. A point a is called a stationary point of some function f : Rn → R iff ∇(f)
∣∣∣
a

=

(0, . . . , 0). A point a is called a critical point iff it is a stationary point or f is not
differentiable in any neighborhood of a.

Theorem 3 A function f : Rn → R attains its local maxima and minima only at critical
points.

However, it bears noting that not every critical or stationary point is a local maxima
or minima! A trivial example would be the function f(x, y) = x2 − y2: the origin is a
stationary point, yet neither a local minima or maxima (as f(0, ε) < 0 < f(ε, 0), and thus
there are positive and negative values of f attained in any ball around the origin, where it
is 0.)

How can we tell which stationary points do what? Well, in one-variable calculus, we
used the idea of the “second derivative” to determine what was going on! In specific, we
knew that if the second derivative of a function f at some point a was negative, then tiny
increases in our variable at that point would cause the first derivative to decrease, and tiny
decreases in our variable at that point would cause the negative of the first derivative to
increase – i.e. cause the first derivative to decrease, and therefore make the function itself
decrease! Therefore, the second derivative being negative at a stationary point implied that
that point was a local maxima.

In higher dimensions, things are tricker – we no longer have this idea of a “single” second

derivative, but instead have many different second derivatives, like ∂2f
∂x∂y and ∂2f

∂z2
. Yet, we

can still use the same ideas as before to figure out what’s going on!
In particular, in one dimension, we said that we wanted tiny positive changes of our

variables to make the first functions decrease. In other words, given any of the partials ∂f
∂xi

,
we want any positive changes in the direction of this partial to make our function decrease
– i.e. we want the directional derivative of ∂f

∂xi
to be negative in any direction v, where all

of the coördinates of v are positive. (Positivity here stems from the same reason that in
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one dimension, we have that the first derivative is increasing for all of the points to the left
of a maxima and decreasing for all of the points to the right of a maxima.)

So: this condition, if we write it out, is just asking that for every i and nonzero v, that(
∂2f

∂x1∂xi
,
∂2f

∂x2∂xi
, . . .

∂2f

∂xn∂xi

)
· (v21, v22, . . . v2n)

is negative. If you choose to write this out as a matrix, this actually becomes the claim
that for any v, we have

vT ·


∂2f

∂x1∂x1
. . . ∂2f

∂x1∂xn
...

. . .
...

∂2f
∂xn∂x1

. . . ∂2f
∂xn∂xn

 · v < 0.

From linear algebra, you may hopefully remember that this condition is called being negative-
definite, and is equivalent to having all n of your eigenvalues existing and being negative.

So! Just a bit more complicated than the 1-dimensional case :) But doable! We restate
what we just (very loosely) discussed above here in the following theorem and definition:

Definition. The Hessian of a function f : Rn → R, H(f), is the following n× n matrix:
∂2f

∂x1∂x1
. . . ∂2f

∂x1∂xn
...

. . .
...

∂2f
∂xn∂x1

. . . ∂2f
∂xn∂xn


Theorem 4 A function f : Rn → R has a local maxima at a stationary point a if all of its
second-order partials exist and are continuous in a neighborhood of a, and the Hesssian of f
is negative-definite at a. Similarly, it has a local minima if the Hessian is positive-definite
at a; as well, if it has both positive and negative eigenvalues, it has a saddle point at a
(i.e. there are directions one can go in to either decrease or increase your function, as you
want.)

A quick example, to illustrate how this gets used:

Example. For f(x, y) = x2 + y2, g(x, y) = −x2 − y2, and h(x, y) = x2 − y2, find local
minima and maxima.

Solution. First, by taking partials, it is clear that the only point at which the gradient of
these functions is (0, 0) is the origin. There, we have that

H(f)
∣∣∣
(0,0)

=

[
2 0
0 2

]
, H(g)

∣∣∣
(0,0)

=

[
−2 0
0 −2

]
, H(h)

∣∣∣
(0,0)

=

[
2 0
0 −2

]
,

and thus that f is positive-definite at (0,0), g is negative-definite at (0,0), and h is neither
at (0,0) by examining the eigenvalues. Thus f has a local minima at (0, 0), g has a local
maxima at (0,0), and h has a saddle point at (0,0).
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