Recitation 2: The Derivative

Week 2
Caltech 2011

1 Random Question

Is it possible to find a collection of open balls $\left\{B_{\mathbf{x}_{i}}\left(r_{i}\right)\right\}_{i=1}^{\infty}$ in \mathbb{R}^{n} such that

- $\bigcup_{i=1}^{\infty} B_{\mathbf{x}_{i}}\left(r_{i}\right) \supseteq \mathbb{Q}^{n}$, and
- $\sum_{i=1}^{\infty} \operatorname{volume}\left(B_{\mathbf{x}_{i}}\left(r_{i}\right)\right)<1$?

2 The Derivative

2.1 The directional derivative: definitions, theorems, examples.

This lecture is centered around defining the idea of the derivative in \mathbb{R}^{n}. There are a number of possible ways to do this! One way is to generalize the idea of "slope" from \mathbb{R}^{1}.

In other words: in \mathbb{R}^{1}, the derivative of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ at some point a is the "slope" of the graph $f(x)=y$ at the point $(a, f(a))$. Analogously, we could define the directional derivative of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at some point \mathbf{a}, along some direction \mathbf{v}, as the "slope" of f at the point \mathbf{a}, as measured in the direction \mathbf{v}. More formally:

Definition. The directional derivative of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at some point a along some direction \mathbf{v} is the limit

$$
f^{\prime}(\mathbf{a} ; \mathbf{v}):=\lim _{h \rightarrow 0} \frac{f(\mathbf{a}+h \cdot \mathbf{v})-f(\mathbf{a})}{h \cdot\|\mathbf{v}\|}
$$

To illustrate what's going on here, consider the following example:
Question 1 Consider the function $f(x, y)=-\sqrt{x^{2}+y^{2}}$. What is the directional derivative of this function at the point $(0,-1)$ in the direction $(0,1)$?

Solution. First, to get a good idea of what's going on in this problem, we graph our function:

Visually, if we look at the point $(0,-1)$ and its slope in the direction $(0,1)$, we can see that it should be 1 , just by examination. So, let's calculate, and see if our visual intuition matches our mathematical definition:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f((0,-1)+h \cdot(0,1))-f((0,-1))}{h} & =\lim _{h \rightarrow 0} \frac{f((0, h-1))-f((0,-1))}{h \cdot| |(0,1)| |} \\
& =\lim _{h \rightarrow 0} \frac{\left(-\sqrt{0^{2}+(h-1)^{2}}\right)-\left(-\sqrt{0^{2}+(-1)^{2}}\right)}{h \cdot 1} \\
& =\lim _{h \rightarrow 0} \frac{-|h-1|+1}{h} \\
& =\lim _{h \rightarrow 0} \frac{h}{h} \\
& =1,
\end{aligned}
$$

because for very small values of $h,-|h-1|=h-1$. So this matches our intuition!
Some of the most commonly-occuring directional derivatives are the partial derivatives, which we define below:
Definition. The partial derivative $\frac{\partial f}{\partial x_{i}}$ of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ along its i-th coördinate at some point \mathbf{a} is just the directional derivative $f^{\prime}\left(\mathbf{a} ; \mathbf{e}_{i}\right)$: in other words, the limit

$$
\lim _{h \rightarrow 0} \frac{f\left(\mathbf{a}+h \cdot \mathbf{e}_{i}\right)-f(\mathbf{a})}{h}
$$

Equivalently, it is just the derivative of f if we "hold all of f 's other variables constant" - i.e. if we think of f as a single-variable function with variable x_{i}, and treat all of the other x_{j} 's as constants. This method is markedly easier to work with, and is how we actually, say, *calculate* partial derivatives.

So: as it turns out, knowing these partial derivatives tells us exactly how to find *any* directional derivative! In particular, we have the following theorem:

Theorem 2 The directional derivative of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at some point a along some direction \mathbf{v} is given by the dot product of the gradient of f at \mathbf{a},

$$
\left.\nabla f\right|_{\mathbf{a}}:=\left(\frac{\partial f}{\partial x_{1}}(\mathbf{a}), \ldots, \frac{\partial f}{\partial x_{n}}(\mathbf{a})\right)
$$

with $\mathbf{v} /\|\mathbf{v}\|$. In other words,

$$
f^{\prime}(\mathbf{a} ; \mathbf{v}):=\left.\nabla f\right|_{\mathbf{a}} \cdot \frac{\mathbf{v}}{\|\mathbf{v}\|}
$$

To illustrate the use of this theorem, return to our cone problem from earlier. There, we had $f(x, y)=-\sqrt{x^{2}+y^{2}}$; thus, if we hold y constant, we can see that

$$
\frac{\partial f}{\partial x}=-\frac{2 x}{2 \sqrt{x^{2}+y^{2}}}=\frac{-x}{\sqrt{x^{2}+y^{2}}}
$$

Similarly, by holding y constant, we have

$$
\frac{\partial f}{\partial y}=\frac{-y}{\sqrt{x^{2}+y^{2}}} .
$$

Therefore, we know that the directional derivative of f at $(0,-1)$ in the direction $(0,1)$ is given by

$$
\begin{aligned}
\left(\frac{\partial f}{\partial x}(0,-1), \frac{\partial f}{\partial y}(0,-1)\right) \cdot(0,1) & =\left(\frac{-(0)}{\sqrt{0^{2}+(-1)^{2}}}, \frac{-(-1)}{\sqrt{0^{2}+(-1)^{2}}}\right) \cdot \\
& =(0,1) \cdot(0,1) \\
& =1
\end{aligned}
$$

which matches our earlier answer.

2.2 The total derivative: definitions, theorems

So: as it turns out, the above notion is not the only way we have of thinking about derivatives! In addition to the geometric notion of "slope" in a given direction, we also had the more algebraic notion of a derivative being a "linear approximation" of a function in a given direction.

Specifically, for \mathbb{R}^{1}, the derivative $f^{\prime}(a)$ was a constant such that the function $f(a)+$ $x f^{\prime}(a)$ was "very close" to $f(x)$ near a : i.e. it was a constant chosen such that the limit

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)-f^{\prime}(a) \cdot h}{h}=0 .
$$

(i.e. in the above limit, subtracting $f(a)+f^{\prime}(a) \cdot h$ took away the "linear" part of f, leaving it with only (if f had a Taylor series $\sum c_{i} x^{i}$) terms that are quadratic or higher-order.)

Analogously, for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we can ask that the derivative be something similar! Specifically, consider the following definition:

Definition. The function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has a total derivative $T_{\mathbf{a}}$ at some point \mathbf{a} if $f(\mathbf{a})+T_{\mathbf{a}} \cdot(\mathbf{x})$ is a "linear approximation" of f at \mathbf{a} : i.e. if the limit

$$
\lim _{\|\mathbf{h}\| \rightarrow 0} \frac{f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-T_{\mathbf{a}} \cdot \mathbf{h}}{\|\mathbf{h}\|}=0
$$

While this definition of the derivative has the advantage that it captures this idea of a "linear approximation" in a way that the directional derivative doesn't obviously do, it has the downside that it seems impossible to calculate! How can we find such a thing?

Well, as it turns out, with the directional derivative! In particular, we have the following theorem:

Theorem 3 If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has a total derivative at the point ∂, then this total derivative is simply the gradient of f at \mathbf{a} : i.e.

$$
T_{\mathbf{a}}=\left(\frac{\partial f}{\partial x_{1}}(\mathbf{a}), \ldots, \frac{\partial f}{\partial x_{n}}(\mathbf{a})\right)
$$

A quick consequence of the above theorem is that if f has a total derivative at some point \mathbf{a}, it has all of its directional derivatives at that point a. A question we could then ask is the following: does the converse hold? In other words, if a function f has all of its partial derivatives at some point, does it have a total derivative at that point?

As it turns out: no! Consider the following example:
Example. The function

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{y^{3}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\
0, & (x, y)=(0,0)
\end{array}\right.
$$

has partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ defined on all of \mathbb{R}^{2}, and yet has no total derivative at $(0,0)$.
Solution. To find f 's partial derivatives, we simply calculate and break things apart into cases. Specifically, for $\frac{\partial f}{\partial x}$, there are two possible situations we can find ourself in: either $y \neq 0$, or $y=0$. In the first case, we have (by differentiating)

$$
\frac{\partial f}{\partial x}=\frac{-2 x y^{3}}{\left(x^{2}+y^{2}\right)^{2}}
$$

In the second, because $y=0 \Rightarrow f(x, y)=0$, it doesn't matter whether we're looking at $\frac{\partial f}{\partial x}(x, 0)$ with $x \neq 0$, or $\frac{\partial f}{\partial x}(0,0)$; in either case

$$
\frac{\partial f}{\partial x}=0
$$

(Normally, we'd have to worry about (0,0 as a special case, because our function is piece-wise defined; it's possible for the derivative to do something weird at the origin as a result of this. See the last example problem in this recitation for a situation where this happens!)

Similarly, for $\frac{\partial f}{\partial y}$, we have that whenever $x \neq 0$, we have (by differentiating)

$$
\frac{\partial f}{\partial y}=\frac{3 y^{2}}{x^{2}+y^{2}}-\frac{2 y^{4}}{\left(x^{2}+y^{2}\right)^{2}}
$$

and whenever $x=0$, we have (as $f(0, y)=\frac{y^{3}}{y^{2}}=y$ for $y \neq 0$, and $f(0,0)=0=y$ for $y=0$)

$$
\frac{\partial f}{\partial y}=1
$$

So: we know that if our function ${ }^{*}$ did* have a total derivative at $(0,0)$, it would be given by the partials - i.e. that $T_{(0,0)}$, if it exists, must be $\left(\left.\left.\frac{\partial f}{\partial x}\right|_{(0,0)} \frac{\partial f}{\partial y}\right|_{(0,0)}\right)=(0,1)$.

However, when we examine the limit

$$
\begin{aligned}
& \lim _{\left\|\left(h_{1}, h_{2}\right)\right\| \rightarrow 0} \frac{f\left((0,0)+\left(h_{1}, h_{2}\right)\right)-f(0,0)-T_{(0,0)} \cdot\left(h_{1}, h_{2}\right)}{\left\|\left(h_{1}, h_{2}\right)\right\|} \\
&= \lim _{\left\|\left(h_{1}, h_{2}\right)\right\| \rightarrow 0} \frac{\frac{h_{2}^{3}}{h_{1}^{2}+h_{2}^{2}}-0-(0,1) \cdot\left(h_{1}, h_{2}\right)}{\left\|\left(h_{1}, h_{2}\right)\right\|} \\
&= \lim _{\left\|\left(h_{1}, h_{2}\right)\right\| \rightarrow 0} \\
&= \lim _{\left\|\left(h_{1}, h_{2}\right)\right\| \rightarrow 0} \frac{\frac{h_{2}^{3}}{\left\|\left(h_{1}, h_{2}\right)\right\|^{2}-h_{2}}}{\left\|\left(h_{1}, h_{2}\right)\right\|} \\
& \frac{h_{2}\left(h_{2}^{2}-\left\|\left(h_{1}, h_{2}\right)\right\|^{2}\right)}{\left\|\left(h_{1}, h_{2}\right)\right\|^{3}},
\end{aligned}
$$

we can see that along the line $h_{1}=h_{2}$, we have

$$
\begin{aligned}
& \lim _{\left\|\left(h_{1}, h_{2}\right)\right\| \rightarrow 0} \frac{h_{2}\left(h_{2}^{2}-\left\|\left(h_{1}, h_{2}\right)\right\|^{2}\right)}{\left\|\left(h_{1}, h_{2}\right)\right\|^{3}} \\
= & \lim _{h_{2} \rightarrow 0} \frac{h_{2}\left(h_{2}^{2}-\left(\sqrt{h_{2}^{2}+h_{2}^{2}}\right)^{2}\right)}{\left(\sqrt{h_{2}^{2}+h_{2}^{2}}\right)^{3}} \\
= & \lim _{h_{2} \rightarrow 0} \frac{h_{2}\left(h_{2}^{2}-2 h_{2}^{2}\right)}{\left(\sqrt{2 h_{2}^{2}}\right)^{3}} \\
= & \lim _{h_{2} \rightarrow 0} \frac{-h_{2}^{3}}{(\sqrt{2})^{3} \cdot\left|h_{2}\right|^{3}} \\
= & \lim _{h_{2} \rightarrow 0}-\frac{h_{2} /\left|h_{2}\right|}{2 \sqrt{2}},
\end{aligned}
$$

which clearly doesn't have a limit (and definitely doesn't converge to 0 !) as $h_{2} \rightarrow 0$. So our function is not totally differentiable at $(0,0)$.

What went wrong above? Well, while our function *did* have all of its partial derivatives, they weren't exactly the nicest partial derivatives you could hope for. In other words, if you look at $\frac{\partial f}{\partial x}$: on any values along the line $x=y$ where $x \neq 0$ we have

$$
\frac{\partial f}{\partial x}=\frac{-2 x \cdot x^{3}}{\left(x^{2}+x^{2}\right)^{2}}=\frac{-2 x^{4}}{4 x^{4}}=-\frac{1}{2} .
$$

However when $x=y=0$, we have $\frac{\partial f}{\partial x}(0,0)=0$! So, this partial is not a continuous function on all of \mathbb{R}^{2}. As a result, its behavior at $(0,0)$ - which we use to define $T_{(0,0)}$ doesn't accurately represent its behavior *near* $(0,0)$, which is why $T_{(0,0)}$ failed to be a good linear approximation to f near $(0,0)$.

As it turns out, this is the *only* way in which we can have partials and yet not have a total derivative! Formally, we have the following theorem:

Theorem 4 For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, if all of f 's partials exist in a neighborhood of a and are continuous at the point \mathbf{a}, then f has a total derivative at \mathbf{a}.

The last question we ask in our recitation, then, is whether continuity of the partials is *necessary* for a function to have a total derivative. In other words: suppose we have a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has all of its partials defined at some point a, but some of them are discontinuous at a. Can f still somehow have a total derivative at \mathbf{a} ?

The answer, as we discuss with our last example, is yes!
Example. The function

$$
f(x, y)=\left\{\begin{array}{cc}
x^{2} y^{2} \cdot \sin \left(\frac{1}{x y}\right), & x \neq 0 \text { and } y \neq 0, \\
0, & \text { otherwise },
\end{array}\right.
$$

has $\frac{\partial f}{\partial x}$ discontinuous at every point of the form $(0, y)$ where $y \neq 0, \frac{\partial f}{\partial y}$ discontinuous at every point of the form $(x, 0)$ where $x \neq 0$, and yet has a total derivative everywhere.

Solution. As an aside, note that this function is a generalization of the map $x \mapsto x^{2} \sin (1 / x)$, which (from back in Ma1a / Ma8!) was an example of a function on \mathbb{R}^{1} that was differentiable but not C^{1}.

We calculate f 's partials, starting with $\frac{\partial f}{\partial x}$. If $y=0$, we have $f(x, 0)=0$; therefore, $\frac{\partial f}{\partial x}=0$.

Otherwise, if $y \neq 0$, we have two situations: either we're finding $\frac{\partial f}{\partial x}$ at some point where $x \neq 0$, in which case we can just differentiate normally:

$$
\frac{\partial f}{\partial x}=2 x y^{2} \cdot \sin \left(\frac{1}{x y}\right)-y \cos \left(\frac{1}{x y}\right) .
$$

However, if we're in the situation where we want to find $\frac{\partial f}{\partial x}$ at a point where $y \neq 0, x=0$, because our function is piece-wise defined, we have to use the definition of the derivative to
find $\frac{\partial f}{\partial x}$:

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\lim _{h \rightarrow 0} \frac{f(y, 0+h)-f(y, 0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2} y^{2} \cdot \sin \left(\frac{1}{x y}\right)-0}{h} \\
& =\lim _{h \rightarrow 0} h y^{2} \cdot \sin \left(\frac{1}{x y}\right) \\
& =0 .
\end{aligned}
$$

Similarly, for $\frac{\partial f}{\partial y}$, we can show that whenever both $x, y \neq 0$, we have

$$
\frac{\partial f}{\partial y}=2 x^{2} y \cdot \sin \left(\frac{1}{x y}\right)-x \cos \left(\frac{1}{x y}\right),
$$

and whenever either of x or y are zero, $\frac{\partial f}{\partial y}=0$.
So: notice that $\frac{\partial f}{\partial x}$ is discontinuous at all of the points $(0, y)$ where $y \neq 0$: this is because its derivative at $(0, y)$ is 0 , while the limit as x approaches zero of the function $2 x y^{2} \cdot \sin \left(\frac{1}{x y}\right)-y \cos \left(\frac{1}{x y}\right)$ does not exist (and in fact fluctuates rapidly between y and $-y$ as x approaches 0 .) Similarly, we can see that $\frac{\partial f}{\partial y}$ is discontinuous at all of the points $(x, 0)$ where $x \neq 0$.

However, as it turns out, our function has a total derivative at all of these points! In specific, we have (for points of the form $(0, y)$) the limit

$$
\begin{aligned}
& \lim _{\left\|\left(h_{1}, h_{2}\right)\right\| \rightarrow 0} \frac{f\left((0, y)+\left(h_{1}, h_{2}\right)\right)-f(0, y)-T_{(0, y)} \cdot\left(h_{1}, h_{2}\right)}{\left\|\left(h_{1}, h_{2}\right)\right\|} \\
= & \lim _{\left\|\left(h_{1}, h_{2}\right)\right\| \rightarrow 0} \frac{\left(h_{1}^{2} \cdot\left(y+h_{2}\right)^{2}\right) \sin \left(\frac{1}{h_{1}\left(y+h_{2}\right)}\right)-0-(0,0) \cdot\left(h_{1}, h_{2}\right)}{\left\|\left(h_{1}, h_{2}\right)\right\|} . \\
= & \lim _{\left\|\left(h_{1}, h_{2}\right)\right\| \rightarrow 0} \frac{\left(h_{1}^{2} \cdot\left(y+h_{2}\right)^{2}\right) \sin \left(\frac{1}{h_{1}\left(y+h_{2}\right)}\right)}{\left\|\left(h_{1}, h_{2}\right)\right\|} .
\end{aligned}
$$

The fraction in this limit is bounded below by

$$
\frac{-h_{1}^{2}}{\left\|\left(h_{1}, h_{2}\right)\right\|} \cdot\left(y+h_{2}^{2}\right) \geq-\frac{h_{1}^{2}}{\left|h_{1}\right|} \cdot(2 y)^{2}=-\left|h_{1}\right| \cdot(2 y)^{2},
$$

and above by

$$
\frac{h_{1}^{2}}{\left\|\left(h_{1}, h_{2}\right)\right\|} \cdot\left(y+h_{2}\right)^{2} \leq \frac{h_{1}^{2}}{\left|h_{1}\right|} \cdot(2 y)^{2}=\left|h_{1}\right| \cdot(2 y)^{2},
$$

for all values of $h_{2}<y$. So: notice that $\lim _{\left(h_{1}, h_{2}\right) \rightarrow 0}\left|h_{1}\right| \cdot(2 y)^{2}$ is clearly 0 ; therefore, as $\left(h_{1}, h_{2}\right) \rightarrow 0$, we know that both of these bounding limits converge to 0 . Therefore, by the squeeze theorem, we know that our original limit must converge to 0 as well - and thus that our function has a total derivative at all points of the form $(0, y)$, where $y \neq 0$!

Similar logic shows that it has a total derivative at all points of the form $(x, 0)$ where $x \neq 0$, as well as at $(0,0)$: then, because our partials *are* continuous on the open set $\{(x, y): x \neq 0$ and $y \neq 0\}$, we know that our function has a total derivative everywhere in \mathbb{R}^{2} ! So we've proven our claim.

