
Math 1c TA: Padraic Bartlett

Recitation 1: Open and Closed Sets; Limits and Continuity

Week 1 Caltech 2011

1 Random Question

Consider the two possible definitions of “connectedness,” for a subset of Rn:

Definition. A subset X ⊂ Rn is called path-connected if for any two points u,v ∈ X,
there is a path from u to v: i.e. there is a continuous function γ : [0, 1] → Rn such that
γ(0) = u, γ(1) = v, and γ’s image is contained within X.

Definition. A subset X ⊂ Rn is called connected if there are *no* pairs of open sets U ,
V ⊆ Rn such that X = (U ∩X) ∪ (V ∩X) and both of U ∩X,V ∩X are nonempty.

Are these definitions equivalent? Or is there some set X ⊂ Rn – say, R2, if you want to
work somewhere specific – that satisfies one of these definitions and not the other?

2 Administrivia

Here are most of the random administrative details for the course:

• My email: padraic@caltech.edu

• My office: 360 Sloan.

• My office hours: 10-11pm on Sunday night and/or by appointment.

• My website: www.its.caltech.edu/∼padraic. Course notes for every recitation will be
posted here, ideally within a few days of the recitation.

• HW policy: The course-wide policy is that every student is allowed at most 1 late
HW without a note from the deans or health center, with an extension of at most
one week. Homeworks after this one will require a note from the health center or the
deans: it bears noting that both entities are remarkably kind, and as long as your
reason for needing more time is not something like “all-night SC2 marathon,” they’ll
grant an extension.

• Random questions: I post a random question at the start of every recitation! If you’ve
seen the material in rec before, and get distracted, they’re meant to offer something
mathematically interesting to focus on until the lecture returns to a place you haven’t
seen. Because we’re at Caltech, and pretty much anything we talk about in Math
1 *some* of you have seen before, it struck me as a decent way to avoid boring
some students without losing others. If you solve any of them, tell me! I am always
interested to see solutions.
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3 Open and Closed Subsets of Rn

3.1 Basic definitions.

To refresh your memory, we restate the following definitions:

Definition. In Rn, the open ball around a of radius r, Ba(r), is defined as follows:

Ba(r) := {v ∈ Rn : ||v − a|| < r}.

Similarly, the closed ball around a of radius r, Ba(r), is defined as follows:

Ba(r) := {v ∈ Rn : ||v − a|| ≤ r}.

Definition. A set X ⊆ Rn is called open if and only if for every point x ∈ X, there is
some radius r such that the open ball Bx(r) is contained entirely within the set X.

A set X ⊆ Rn is called closed if and only if the complement of this set,

Xc := {v ∈ Rn : v /∈ X},

is open.

Definition. Given a set X ⊆ Rn, we can define the following three objects:

• Interior: The interior of X, denoted X̊ or int(X), is the largest open set contained
within X. Equivalently, it can be defined as the subset

X̊ := {x ∈ X : ∃r ∈ R s.t. Bx(r) ⊆ X}.

• Exterior: The exterior of X, denoted ext(X), is the interior of Xc.

• Boundary: The boundary of X, denoted ∂(X), is the collection of all points in Rn

that are neither in the interior or exterior of X. Equivalently, it can be defined as the
subset

∂(X) := {v ∈ Rn : ∀r ∈ R, (Bx(r) ∩X) 6= ∅ and (Bx(r) ∩Xc) 6= ∅}.

Note that, trivially, we have the following proposition:

Proposition 1 A set X is open iff X = int(X). A set X is closed iff it contains its
boundary – i.e. iff X ⊇ ∂(X).

3.2 Some worked examples.

We work a few examples here, to demonstrate how these definitions get used:

Proposition 2 The open ball Ba(r) is open, for any a ∈ Rn and any r > 0.
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Proof. To show this, all we need to do is pick any x ∈ Ba(r), and find a radius r′ such
that Bx(r′) ⊆ Ba(r). How can we do this?

Well: geometrically, what we’re looking for is a value of r′ such that any point that’s
within r′ of x will be within r of a. So, if we apply the triangle inequality, we can see that
if

r′ = r − ||x− a||,

and we take any point y ∈ Bx(r′), we have that

||y − a|| ≤ ||x− a||+ ||y − x||
< ||x− a||+ r − ||x− a||
= r.

Therefore, we have that any point y in Bx(r′) is also in the ball Ba(r). As we’ve constructed
this ball for any point x in Ba(r), we can conclude that this set is open, by definition.

Question 3 In R, is the set [a, b) open? Closed?

Solution. Because any open ball (b − r, b + r) around the real number b contains points
both less than and greater than b, it contains both points inside and outside of [a, b) –
therefore, b is in the boundary of [a, b). Similarly, by looking at open balls (a − r, a + r)
around a, we can argue that a is also on the boundary of [a, b).

What does this mean? Well, we know that any closed set must contain all of its boundary
points; thus, because b /∈ [a, b), we know this set is not closed. As well, we know that the
complement of this set (−∞, a) ∪ [b,∞) does not contain a, one of its boundary points –
therefore, the complement of this set is not closed, and thus [a, b) itself is not open.

Question 4 In R, is the set Q open? Closed?

Solution. First, notice that in any ball (a− r, a+ r) around any number a, there are both
rational points and irrational points – to see specific examples, simply note that both the
sequences ba · 10nc/10n and ba · 10nc/10n −

√
2/n converge to a, and that the first of these

sequences is made of rational numbers and the second of irrational numbers.
What does this mean? Well, for one, this means that Q cannot be open – there are

no open balls around *any* of its elements contained entirely within Q, as shown above.
However, we’ve also shown that Q cannot be closed – if we pick any irrational number in Qc,
we’ve just shown above that in any ball around this irrational there are rational numbers!

Therefore, this set is neither closed nor open.

So: sets can be closed, open, or neither. Can they be both?
As it turns out: yes! If we’re discussing subsets of Rn, there are two specific examples:

∅ and Rn. A proof of this claim is remarkably trivial: to see that Rn, for example, take any
point x in Rn; as the ball Bx(1) is contained within Rn, we’ve just shown that Rn is open.
To see that it’s closed, we just have to show that ∅ is open.

But this, too, is trivial, as any element of the empty set has an open ball around it
contained within the empty set! (Why can we assert this? Well – there are *no* members
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of the empty set! Therefore, as long as we don’t claim that any members of the empty
set actually exist, we can ascribe to them whatever properties we would like. I.e.: the
statement “every element of the empty set is a purple elephant that commutes with matrix
multiplication” is completely true, as there trivially is no counterexample!)

So Rn is both open and closed; therefore, its complement ∅, is both closed and open.

4 Limits and Continuity in Rn

4.1 Basic definitions.

We now turn to a discussion of limits and continuity as they exist in Rn; again, we restate
a few definitions for your convenience.

Definition. For a set D ⊆ Rn, values a ∈ Rn, L ∈ Rm, and a function f : D → Rm, we say
that

lim
x→a

f(x) = L

if

∀ε > 0∃δ > 0∀x ∈ D, ((||x− a|| < δ)→ (||f(x)− L|| < ε)).

Notice that this definition is completely identical to the one we used in R, except we’ve
replaced the |x − a| and |f(x) − L|’s with ||x − a|| and ||f(x) − L||; this is because in Rn,
we measure distance using the Euclidean norm || · ||, which happened to be equal to taking
the absolute value | · | when n = 1.

Definition. A function f : D → Rn is continuous at a ∈ D iff

lim
x→a

f(x) = f(a).

Note that this definition is *exactly* the same as it was for R.

4.2 Some worked examples.

Again, to illustrate how these definitions work, we present a few examples:

Question 5 Consider the function f(x, y) : R2 → R, defined as follows:

f(x, y) =
xy

x2 + y2
, (x, y) 6= (0, 0)

0, (x, y) = (0, 0).

Is f(x, y) continuous at (0, 0)?
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Solution. As it turns out (and as you might be able to guess after attempting to graph or
sketch this function), no! This function is not continuous at (0, 0).

How do we prove such a thing? Well, as it turns out, we can use basically the same
methods we used to show a function was not continuous in R! One particularly popular
method we developed was the following: suppose that we can find a sequence {(xm, ym)}∞m=1

of elements in R2 such that

• limm→∞(xm, ym) = (0, 0), and

• limm→∞ f(xm, ym) 6= 0.

Then, we know that no matter how close we get to (0, 0), for sufficiently large values of m,
we’ll have (xm, ym) is as close as we want to be to (0, 0), and yet f(xm, ym) will not be close
to 0 – i.e. lim(x,y)→(0,0) f(x, y) 6= 0! Which is what we want to prove.

So, we just need to find such a sequence. From playing around with this function, it’s
not too hard to notice that in specific, for any x 6= 0,

f(x, x) =
x2

x2 + x2
=

1

2
,

and thus that if we let {(xm, ym)}∞m=1 = {(1/m, 1/m)}∞m=1, we have a sequence of points in
R2 that converge to (0, 0) such that limm→∞ f((1/m, 1/m)) = 1/2 6= 0. Thus, our function
is not continuous at (0, 0), as claimed.

Let’s study something that, at first glance, may look pretty similar:

Question 6 Consider the function f(x, y, z) : R3 → R, defined as follows:

f(x, y) =
xyz

x2 + y2 + z2
, (x, y) 6= (0, 0)

0, (x, y, z) = (0, 0).

Is f(x, y, z) continuous at (0, 0, 0)?

Solution. Given the earlier problem, you might expect this function to also be discon-
tinuous at (0, 0, 0); however, after about fifteen minutes of trying to find sequences that
converge to any other nonzero value, you might begin to doubt this intuition.

Which, as it turns out, is the correct move – because this function is continuous! Again,
to prove that this is continuous, we can use the same methods that we used in R, which
were the following:

• Start by taking the quantity ||f(x − L||, and try to come up with a simple upper
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bound on it. In this case, we have for all (x, y, z) 6= (0, 0, 0),

||f(x, y, z)− (0, 0, 0)|| =
∣∣∣∣ xyz

x2 + y2 + z2

∣∣∣∣
≤
∣∣∣∣max{|x|3, |y|3, |z|3}

x2 + y2 + z2

∣∣∣∣
≤
∣∣∣∣max{|x|3, |y|3, |z|3}

max{x2, y2, z2}

∣∣∣∣
= |max{|x|, |y|, |z|}|.

(This trick, where we bounded a polynomial expression xyz from above by assuming
all of your variables x, y, z . . . were just the largest one max{|x|, |y|, |z|}, and bounded
another polynomial x2 + y2 + z2 from below by only taking the largest monomial
max{|x|2, |y|2, |z|2} – this is *super super useful*! Do this.)

• Now, we want to bound the ||x − a|| portion of our proof from below, so that it is
related to the simple upper bound we just got. In this case, we can use the observation
that

||(x, y, z)− (0, 0, 0)|| =
√
x2 + y2 + z2

≥
√

max{x2, y2, z2}
= |max{|x|, |y|, |z|}|.

• Now, given any ε > 0, use this knowledge to pick a value of δ > 0 such that whenever
||x−a|| < δ, ||f(x−L|| < ε! In particular, for our example, we’ve shown the following:

||f(x, y, z)− (0, 0, 0)|| ≤ |max{|x|, |y|, |z|}|, and

|max{|x|, |y|, |z|}| ≤ ||(x, y, z)− (0, 0, 0)||.

Therefore, if we pick δ = ε, we will have

||f(x, y, z)− (0, 0, 0)|| ≤ |max{|x|, |y|, |z|}| ≤ ||(x, y, z)− (0, 0, 0)|| < δ = ε,

which concludes our proof. So we’re done!

4.3 Epilogue.

A fun “bonus” random question: Suppose you consider the generalization

f(x1, . . . xn) =
x1 · . . . · xn
xm1 + . . . xmn

, x 6= 0,

0, x = 0.

of the function we’ve worked with in the last two questions. What values of n and m make
it continuous at 0?
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