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Math 1c: The Midterm Review
Midterm Review Caltech 2011

1 What You Have (Hopefully) Learned Thus Far

Thus far, in the first four weeks of Math 1c, we’ve covered the following topics:

• The topology of Rn: specifically, the definitions of open, closed, and compact sets, the concept
of a limit in Rn, and the idea of continuity in Rn. Also, we discussed how the idea of continuity
was linked to this idea of open sets, in that a function f is continuous iff f−1 sends any open
set to an open set.

• The concept of a derivative of a function f : Rn → Rm: specifically, the three distinct notions
of a partial derivative, a directional derivative, and a total derivative. As well, we discussed
how these three definitions are connected to each other.

• Various tools we have for calculating the derivative: specifically, the chain and product rules
for functions f : Rn → Rm.

• Applications of the derivative: how to use the gradient to find critical points, how to use
the Hessian matrix to classify some critical points as minima or maxima, and how to use the
method of Lagrange multipliers to find constrained minima and maxima.

These topics are what your midterm will be on! Between my notes, Alden’s notes, the class
notes, and Apostol, you’ve got all of the key definitions and theorems reprinted approximately a
thousand times; so, if you feel like you’re still shaky with them, go back through your notes (or
contact me/your TA, and we’ll be happy to review them with you!) In lieu of this, I want to instead
present some examples of these ideas in action. Each of the following eight examples illustrates ideas
you may run into on your midterm; I’ve tried to make these all a bit trickier than anything you’ll
see on your test, so that if you’re comfortable with how to solve these eight problems you should
have no difficulties on the midterm. Enjoy!

2 Worked Examples

Problem 1 Define f : Rn → R as the function

f(x1, . . . xn) =

{
(q1 · . . . qn)−1, xi = pi

qi
∈ Q,∀i

0, otherwise.
.

1. For any fixed constant a > 0, what kind of set (i.e open or closed) is

A =

{
(x1, . . . xn) : f(x1, . . . xn) ≤ 1

a

}
?

2. How about the set

B = {(x1, . . . xn) : f(x1, . . . xn) 6= 0}?
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3. Using only your answers to the above two questions as justifications, say whether or not f is
a continuous function.

Solution.

1. We claim that the set A above is open. To prove this, we will construct an open ball around
any point x in A such that this open ball lies within A; as this is the definition of open, it will
prove that A is an open set.

To do this, take any point x in A, and look at the open ball Bx(1) of radius 1 around x. We
seek to find a smaller ball Bx(ε) around x within this ball Bx(1), such that this smaller ball
is contained entirely within A.

How can we do this? Well: there are only finitely many rational numbers p
q such that q < a

and |xi− p
q | < 1; therefore, there are only finitely many rational points

(
p1
q1
, . . . pnqn

)
in our ball

Bx(1) such that q1 · . . . · qn < a in this open ball. These points are the only points for which

it’s even possible that f
(
p1
q1
, . . . pnqn

)
> 1

a ; therefore, there are at most finitely many points y

in the ball Bx(1) on which f(y) > 1
a .

List these points as y1, . . . ,yk, and let ε = min{||x− yi|| : 1 ≤ i ≤ n}. Because there are only
finitely many yi’s and none of them are equal to x, this minimum exists and is > 0. So, draw
a ball of radius ε around x: by construction, it contains no points y such that f(y) > 1

a . So
this ball Bx(ε) is contained entirely within A: thus A is open, as claimed.

2. First, notice that because f(x) 6= 0 if and only if x ∈ Qn, we have that B = Qn. Therefore, B
is neither closed nor open, as the rationals Qn and irrationals (Qn)

c
are both dense in Rn, as

proven on your first homework set.

3. So, notice that we can write B = f−1 ((−∞, 0) ∪ (0,∞)): i.e. we can write B as the preimage
of an open set. So, because B is not open, we know that f cannot be continuous, as a function
f is continuous if and only if f1 takes open sets to open sets.

Problem 2 For

f(x1, . . . xn) = sin
(
x21 + . . . x2n

)
,

find the sets

S1 = {x : f(x) > 0},
S2 = {x : f(x) < 0}, and

S3 = {x : f(x) = 0}.

1. What kinds of sets (i.e. open/closed, bounded or unbounded, compact or noncompact) are
these? Geometrically, what do they look like?

2. Show that (0, . . . 0) is a critical point of f . Using the Hessian, determine what kind of critical
point it is. Geometrically, why is this obvious?

Solution.
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1. So: notice first that f is a continuous function, and that

S1 = f−1 ((0,∞)) ,

S2 = f−1 ((−∞, 0)) , and

S3 = f−1 ({0}) .

Therefore, because the inverse f−1 of any continuous function f sends open sets to open sets,
we know that because (−∞, 0) and (0,∞) are both open, their images S1 and S2 under f−1

must also both be open. As well, because S3 is just all of the points in Rn not in either S1 or
S2, we can write S3 = (S1 ∪ S2)c, and thus see that S3 is closed.

More explicitly, we can see by solving for x that

S1 = {x :

n∑
i=1

x2i ∈ (2kπ, (2k + 1)π), for some k}

S2 = {x :

n∑
i=1

x2i ∈ ((2k + 1)π, (2k + 2)π), for some k}, and

S3 = {x :

n∑
i=1

x2i = kπ, for some k}.

Therefore, as there are points in each of these sets of arbitrarily large size, none of these sets
are bounded. As a consequence, because a set is compact in Rn iff it is closed and bounded,
none of these sets are compact.

2. To see that (0, . . . 0) is a critical point of f , we merely need to look at f ’s gradient, which is

∇(f) =

(
2x1 · cos

(
n∑
k=1

x2i

)
, 2x1 · cos

(
n∑
k=1

x2i

)
, . . .

)
.

When x = (0, . . . 0), this gradient is 0; therefore, (0, . . . 0) is a critical point.

To determine what kind of critical point this is, we can use the Hessian, which is
2 cos

(∑
x2i
)
− 4x21 sin

(∑
x2i
)

−4x1x2 sin
(∑

x2i
)

−4x1x3 sin
(∑

x2i
)

. . .
−4x2x1 sin

(∑
x2i
)

2 cos
(∑

x2i
)
− 4x22 sin

(∑
x2i
)

−4x2x3 sin
(∑

x2i
)

. . .
−4x3x1 sin

(∑
x2i
)

−4x3x2 sin
(∑

x2i
)

2 cos
(∑

x2i
)
− 4x23 sin

(∑
x2i
)

. . .
...

...
...

. . .

 .
At (0, . . . , 0), this simplifies considerably to

2 0 . . . 0
0 2 . . . 0
...

...
. . .

...
0 0 . . . 2

 ,
which has 2 as an eigenvalue n times. As all of the eigenvalues of the Hessian are positive, and
there are n of them, we can conclude that (0, . . . , 0) is a local minimum.

If we didn’t use the Hessian, we could also trivially note that because our function f(x1, . . . xn) =
sin
(
x21 + . . . x2n

)
,, for any value of x in the ball B0(

√
π), we have 0 ≤

∑
x2i < π and therefore

f(x) = sin(
∑
x2i ) ≥ 0. Therefore, (0, . . . , 0) is a relative minimum within this ball.
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Problem 3 Let f : C2 → C be defined as

f(z1, z2) = z1 · z2.

1. Thinking of C as R2 via the map x+ iy 7→ (x, y), interpret this as a function from R4 to R2.

2. Thinking of Re(f), Im(f) as functions R4 → R, find the directional derivatives of Re(f) and
Im(f) at the point (0, 1, 2, 3) in the direction (4, 5, 6, 38).

Solution. 1. So: if we write z1 = x1 + iy1, z2 = x2 + iy2, we have

f(z1, z2) = z1 · z2
= (x1 + iy1) · (x2 + iy2)

= x1x2 − y1y2 + i(x1y2 + x2y1).

Therefore, if you regard a point (x1+iy1, x2+iy2) in C2 as equivalent to the point (x1, y1, x2, y2) ∈
R4, we can think of our function as the map

f(x1, y1, x2, y2) = (x1x2 − y1y2, x1y2 + x2y1)

from R4 to R2.

2. So, notice that if we’re still thinking of f as a function R4 → R2, we have

Re(f)(x1, y1, x2, y2) = x1x2 − y1y2, and

Im(f)(x1, y1, x2, y2) = x1y2 + x2y1.

Therefore, we have that

∇(Re(f))(x1, y1, x2, y2) = (x2,−y2, x1,−y1), and

∇(Im(f))(x1, y1, x2, y2) = (y2, x2, y1, x1).

Consequently, we can write the directional derivative of Re(f), Im(f) at the point (0, 1, 2, 3)
in the direction (4, 5, 6, 38) as simply the dot product of the normalized vector (4, 5, 6, 38) ·

1
||(4,5,6,38)|| = (4, 5, 6, 38) · 1

39 , and the gradients of these functions at (0, 1, 2, 3):

∇(Re(f))(0, 1, 2, 3) · (4, 5, 6, 38)

39
= (2,−3, 0,−1) · (4, 5, 6, 38)

39

=
8− 15− 38

39

= −45

39
, and

∇(Im(f))(0, 1, 2, 3) · (4, 5, 6, 38)

39
= (3, 2, 1, 0) · (4, 5, 6, 38)

39

=
12 + 10 + 6

39

=
28

39
.
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Problem 4 Define f : Rn → R as the function

f(x) = xT ·A · x,

where A is the matrix

A =


1 2 2 . . . 2
2 1 2 . . . 2
2 2 1 . . . 2
...

...
...

. . .
...

2 2 2 . . . 1

 ,

and n is even.

1. Find the directional derivative of f at (1, . . . 1) in the direction (1,−1, 1,−1, . . . 1,−1).

2. Find all of the critical points of f , and classify them.

Solution.

1. So: notice that if we explicitly write out what f does to a vector (x1, . . . xn), we can see that

f(x1, . . . xn) =
[
x1 x2 x3 . . . xn

]
·


1 2 2 . . . 2
2 1 2 . . . 2
2 2 1 . . . 2
...

...
...

. . .
...

2 2 2 . . . 1

 ·

x1
x2
x3
...
xn



=
[
x1 x2 x3 . . . xn

]
·


x1 +

∑
i6=1 2xi

x2 +
∑
i6=2 2xi

x3 +
∑
i6=3 2xi

...
xn +

∑
i6=n 2xi


=

(
n∑
i=1

x2i

)
+

∑ ∑
(i,j):i 6=j

4 · xixj

 .

This tells us that the gradient of f is given by the vector

∇(f) =

2x1 +
∑
i 6=1

4xi

 ,

2x2 +
∑
i 6=2

4xi

 , . . .

 ;

so, at (1, . . . 1), this is just (4n− 2, 4n− 2, . . . 4n− 2). Therefore, the directional derivative of
f in the direction (1,−1, 1,−1, . . . 1,−1) is just

∇(f)

∣∣∣∣∣
(1,...1)

· (1,−1, 1,−1, . . . 1,−1)

||(1,−1, 1,−1, . . . 1,−1)||
=

(4n− 2)− (4n− 2) + . . .+ (4n− 2)− (4n− 2)
n
√
n

= 0.

2. So: to find the critical points of f , we return to the gradient. We know that ∇(f) = (0, . . . 0)
iff 2xi +

∑
j 6=i 4xj is zero, for every i: i.e. whenever there is a solution to the system of linear
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equations 
2 4 4 . . . 4
4 2 4 . . . 4
4 4 2 . . . 4
...

...
...

. . .
...

4 4 4 . . . 2

 ·

x1
x2
x3
...
xn

 = 0.

This matrix is clearly rank n: therefore, the only combination of its rows that equals the zero
vector is the trivial one (x1, . . . xn) = (0, . . . , 0).

So the only critical point of f is at the origin. What kind of critical point is the origin?

Well: to identify this point, we turn to the Hessian of f , which (by taking derivatives) we can
see is just the matrix 

2 4 4 . . . 4
4 2 4 . . . 4
4 4 2 . . . 4
...

...
...

. . .
...

4 4 4 . . . 2


What are the eigenvalues of this matrix? In other words, for what values of λ does

2− λ 4 4 . . . 4
4 2− λ 4 . . . 4
4 4 2− λ . . . 4
...

...
...

. . .
...

4 4 4 . . . 2− λ


not have full rank? Well: if λ = −2, this matrix is simply the matrix of all 4’s, and thus has
rank 1; therefore, -2 is an eigenvalue of this matrix of multiplicity n−1. As well, if λ = 4n−2,
we have that our matrix is of the form

4n− 4 4 4 . . . 4
4 4n− 4 4 . . . 4
4 4 4n− 4 . . . 4
...

...
...

. . .
...

4 4 4 . . . 4n− 4

 .
If we add all of the rows of this matrix together we get the 0-vector: therefore, this matrix
does not have full rank, and thus 4n− 2 must also be an eigenvector of our matrix. Therefore,
H(f) has both positive and negative eigenvectors at (0,. . . 0), and thus (0, . . . 0) must be a
saddle point.

Problem 5 Let g : R4 → R be defined as

g(w, x, y, z) = wz − xy,

and f : R2 → R4 be defined as

f(a, b) = (a, b, λa, λb),

for some constant λ.
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1. Use the chain rule to find the total derivative of g ◦ f .

2. In one sentence, explain why the above result is obvious. (You may need to use some commas
and/or a semicolon.)

Solution. 1. So, we know that both g and f are continuous functions on all of their domains;
therefore, we know that their composition is continuous everywhere. Therefore, we know that
the total derivative of g ◦ f is just given by the partial derivatives of g ◦ f : i.e. T (g ◦ f) =
D(g ◦ f). So, we can use the chain rule:

D(g ◦ f)

∣∣∣∣∣
a

= D(g)

∣∣∣∣∣
f(a,b)

·D(f)

∣∣∣∣∣
(a,b)

=
[
d −c b −a

] ∣∣∣∣∣
f(a,b)

·


1 0
0 1
λ 0
0 λ



=
[
λb −λa b −a

]
·


1 0
0 1
λ 0
0 λ


= λb− λb+ λa− λa
= 0.

2. This is trivially true because the function g is just the determinant of the matrix

(
w x
y z

)
,

the function f outputs a matrix of rank 1, and the determinant of a 2× 2 matrix of rank 1 is
always the constant 0, (which has derivative 0.)

Problem 6 Let g : R3 → R2 be defined as

g(a, b, c) =

(
b√
c
,
b√
a

)
,

and f : R2 → R3 be defined as

f(x, y, z) =
(
x2, xy, y2

)
.

1. Use the chain rule to find the total derivative of g ◦ f , at any point (x, y) where x, y > 0.

2. In one sentence, explain why the above result is exactly what you’d expect.

Solution. 1. So, we know that both g and f are continuous functions on all of their domains;
therefore, we know that their composition is continuous everywhere. Therefore, we know that
the total derivative of g ◦ f is just given by the partial derivatives of g ◦ f : i.e. T (g ◦ f) =
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D(g ◦ f). So, we can use the chain rule:

D(g ◦ f)

∣∣∣∣∣
a

= D(g)

∣∣∣∣∣
f(x,y)

·D(f)

∣∣∣∣∣
(x,y)

=

[
0 1√

c
− b

2c3/2

− b
2a3/2

1√
a

0

] ∣∣∣∣∣
f(x,y)

·

 2x 0
y x
0 2y


=

[
0 1

y − x
2y2

− y
2x2

1
x 0

] ∣∣∣∣∣
f(x,y)

·

 2x 0
y x
0 2y


=

[
1 0
0 1

]
.

2. We expect this because whenever x, y > 0, g ◦ f is just the identity function R2 → R2.

Problem 7 Using the method of Lagrange multipliers, prove the harmonic mean-geometric mean
inequality. In other words, show that for any x1, . . . xn > 0, we have

n
1
x1

+ . . .+ 1
xn

≤ (x1 · . . . xn)
1/n

.

Solution. This problem illustrates one of the more nonobvious uses of the method of Lagrange
multipliers: proving inequalities! (See my lecture notes from week 4 for another example of how
to do this.) Specifically, to prove an inequality like the above using Lagrange multipliers, we can
simply do the following:

1. Pick one of the functions above –say, (x1 · . . . xn)
1/n

– and choose it to be the “constraining”

function g: i.e. define g(x) = (x1 · . . . xn)
1/n

.

2. Now, choose any constant c, and look at all of the points x such that g(x) = c. Our goal is
now to prove that amongst the set S = {x : g(x = c)} of all points constrained by g(x) = c,
we always have n

1
x1

+...+ 1
xn

≤ g(x) = c: in other words, that the maximum value of n
1
x1

+...+ 1
xn

on this constrained set is ≤ c. Define f(x) as this expression n
1
x1

+...+ 1
xn

.

3. So, we’ve reduced our problem to one we *can* solve with Lagrange multipliers! In specific,
we have

• g(x) = (x1 · . . . xn)
1/n

= c, for any positive number c,

• f(x) = n
1
x1

+...+ 1
xn

,

• and we want to maximize f(x) on the set S = {x : g(x = c)}, and then finally show that
that maximum is ≤ c.

So, this is totally doable! To do this via the method of Lagrange multipliers, we merely need to
check that the ∇g’s are never a linearly dependent set. As there is only one constraint g, this is just
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equivalent to checking that ∇g is never identically 0; so, because

∇(f) =

(
∂

∂x1

(
(x1 · . . . · xn)

1/n
)
,
∂

∂x2

(
(x1 · . . . · xn)

1/n
)
, . . .

)
=

(
∂

∂x1

(
(x1)

1/n · (x2 · . . . · xn)
1/n
)
,
∂

∂x2

(
(x2)

1/n · (x1 · x3 · . . . · xn)
1/n
)
, . . .

)
=

(
1

n
(x1)

1/n−1 · (x2 · . . . · xn)
1/n

,
1

n
(x2)

1/n−1 · (x1 · x3 · . . . · xn)
1/n

, . . .

)
=

(
1

n · x1
(x1 · . . . · xn)

1/n
,

1

n · x2
(x1 · . . . · xn)

1/n
, . . .

)
,

we can see that this is never 0 at any point (x1, . . . xn) where all of the x1’s are > 0.
So, amongst the space of all points with positive coördinates, the method of Lagrange multipliers

says that any critical point of f(x) must occur at a point where

∇(f)(x) = λ · ∇(g)(x),

for some constant λ.
Because

∇(f) =

(
∂

∂x1

(
n

1
x1

+ . . .+ 1
xn

)
,
∂

∂x2

(
n

1
x1

+ . . .+ 1
xn

)
, . . .

)

=

 1

x21
· n(

1
x1

+ . . .+ 1
xn

)2 , 1

x22
· n(

1
x1

+ . . .+ 1
xn

)2 , . . .
 ,

we will have ∇(f)(x) = λ · ∇(g)(x) whenever

1

x2i
· n(

1
x1

+ . . .+ 1
xn

)2 = λ · 1

n · xi
(x1 · . . . · xn)

1/n
,

for every i.

Multiplying both sides by λ−1 · n · x2i · (x1 · . . . · xn)
−1/n

, we can see that this will hold whenever

n2

λ (x1 · . . . · xn)
1/n ·

(
1
x1

+ . . .+ 1
xn

)2 = xi;

in other words, when all of the coördinates are equal to each other! Because our constraint is that

g(x) = (x1 · . . . · xn)
1/n

= c, we can see that this will uniquely happen at the point (c, c, . . . , c).
What kind of point is (c, c, . . . , c) – a maxima or a minima, or neither? How can we determine

this?
In recitation/office hours/when talking to many of you, people often said “the Hessian” as an

answer here! NO. DO NOT USE THE HESSIAN WHEN USING LAGRANGE MUL-
TIPLIERS. BAD STUDENTS. Mostly kidding, but seriously, don’t use the Hessian; it only
applies when you’re trying to find *unconstrained* maxima and minima! (For a quick example that
shows how the Hessian will lie to you when you’re using Lagrange multipliers: consider the function
f(x, y, z) = x2 +y2−z2 and the constraint g(x, y, z) = x−z = 0, i.e. the plane x = z. on this plane,
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the method of Lagrange multipliers will tell you that the points (x, 0, x) are your critical points,
and inspection of the graph will tell you that these are minima on our constrained set: increasing y
will only increase f , and increasing the x/z coördinate will do nothing, as x = z is our constraint.

However, the Hessian of f is the matrix

 2 0 0
0 2 0
0 0 −2

, which corresponds to a saddle point because

it has both positive and negative eigenvalues! DOOM. So, don’t do this!)
So, if we can’t use the Hessian, what can we do? Well, there are usually two situations we’ll find

ourselves in:

• Often, the set S of constrained points will be a closed and bounded set. This means it will be
compact! In this case, if our function f is continuous, it must attain its absolute minima and
maxima on this set, and these points will be critical points of our function – and thus picked
up by the method of Lagrange multipliers! Therefore, in this case, after noting that the
set S is compact in your proof, you can just evaluate f on all of your critical points, and
conclude that the largest value is the absolute maxima and the smallest one is the absolute
minima.

• Sometimes, however, your set S of constrained points will not be a bounded set. That, in
fact, is what we have going on in this situation – the set S is made up out of points x with
geometric mean c, which includes points of the form (x1,

c
x1
, c, . . . c) for arbitrarily large x1.

What do we do here? Well, what you can do is just arbitrarily “cut off” S to some really big
but closed and bounded subset S′: in this case, we can consider the closed and bounded set
S′ = {x : g(x) = c, and xi ≤ κn, for all i}, say, for some really big number κ. Then, to tell if
our point (c, . . . c) is an absolute minima or maxima, we just need to compare it to all of the
critical points on this set – i.e all of the boundary points!

So: at any point on the boundary of the above set S′ = {x : g(x) = c, and xi ≤ κn, for all i},
we have xi = κn for some coördinate xi. Therefore, because (x1 · . . . xn)1/n = c, we know that, by
dividing both sides by xi, we must have

(x2 · . . . xn)1/n =
c

κ
,

and thus that at least one coördinate xj must be such that xj <
(
c
κ

)n/(n−1)
. In this case, we have

f(x) =
n

1
x1

+ . . .+ 1
xn

≥ n
1
xj

=
n

(κ/c)n/(n−1)
=
n · cn/(n−1)

κn/(n−1)
.

For really really big values of κ, this goes to 0 and therefore is < c; therefore, all of the values on
the boundary of this set S are less than the value attained by f(c, . . . c) = n

1
c+...+

1
c

= c. Thus, we’ve

proven that (c, . . . c) is an absolute maxima on our specially constrained set S′: therefore, because
it’s the *only* critical point on all of S, we know that it’s an absolute maxima on all of S! Therefore,
we’ve proven that amongst all of the points x with geometric mean c, the function f(x) is always ≤
its maxima, c!

Therefore, we’ve proven that the harmonic mean is always less than the geometric mean.

Problem 8 Find the closest point to (1, 1, 1) in the set

A = {(x, y, z) : x2 + y2 = 4, z = 2}.

Solution. This example, hopefully, should be much easier than our earlier problem. So: what is
our setup?
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1. Well, it’s pretty clear that the function we want to minimize is the function f ′(x, y, z) that
outputs distance from the point (1, 1, 1): i.e. f ′(x, y, z) =

√
(x− 1)2 + (y − 1)2 + (z − 1)2. If

you want to be clever, though, you can notice that (because distances are always nonnegative
numbers,) the distance function will achieve its minima and maxima at the same places that
the square of the distance function does – i.e. that we can simply try to minimize the function
f(x, y, z) = (x− 1)2 + (y − 1)2 + (z − 1)2. There’s not too much difference here, but avoiding
square roots will make taking derivatives easier on you.

2. The constraint functions are perhaps harder to find. Specifically: what constraints will yield
the set A = {(x, y, z) : x2 + y2 = 4, z = 2}? Well: graphically, this set is a circle of radius 2
around the z-axis, in the plane z = 2: in other words, it’s the following conic section1:

Therefore, we can write S as the intersections of the level sets

g1(x, y, z) = x2 + y2 − z2 = 0,

g2(x, y, z) = z = 2.

So, we’ve phrased our problem in the language of Lagrange multipliers: we have a function f we
want to minimize with respect to the two constraints g1(x, y, z) = 0, g2(x, y, z) = 2. To do this, we
first check that ∇(g1) and ∇(g2) will always be linearly independent, for any (x, y, z):

∇(g1) = (2x, 2y,−2z),

∇(g2) = (0, 0, 1).

Because the points x, y are constrained such that x2 + y2 = 4, we know that we cannot have both
x and y equal to zero at the same time: therefore, there are no points in our set S at which these

1A conic section is simply one of the curves you can get by intersecting a cone (the shape sketched by the graph
of x2 + y2 = z2, up to various constants) with a plane. Conic sections can be either parabolas, hyperbolas, circles,
ellipses, or just a single point.
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curves are linearly dependent, and we can thus use the method of Lagrange multipliers to identify
all possible critical points of f on S! To do this, we simply note that we’re looking for points (x, y, z)
where there are constants λ1, λ2 such that

∇(f) = λ1 · ∇(g1) + λ2 · ∇(g2)

⇒(2x− 2, 2y − 2, 2z − 2) = λ1 · (2x, 2y,−2z) + λ2 · (0, 0, 1)

⇒2x− 2 = 2λ1x,

2y − 2 = 2λ1y, and

2z − 2 = −2λ1z + 2λ2.

So, if we multiply the equations equations 2x−2 = 2λ1x and 2y−2 = 2λ1y by y and x, respectively,
we get that 2λ1xy = 2xy − 2x = 2xy − 2y: i.e. that x = y. Because we know that z = 2 by default
according to our set S, and because x2 + y2 = 4, we then know that the only critical points of our
set occur at (−

√
2,−
√

2, 2) and (
√

2,
√

2, 2).
So, it suffices to classify these points. Because our set of constrained points S is a circle, it’s a

closed and bounded set; therefore, f must attain its absolute minima and maxima on this set, and
these points must be amongst our critical points! Therefore, to find our minima, we just need to
plug in both (−

√
2,−
√

2, 2) and (
√

2,
√

2, 2) into f . As (
√

2,
√

2, 2) is clearly the closer of the two
points to (1, 1, 1), we can safely conclude that this is the closest point in S to (1,1,1).
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