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1. Random Question

Question 1.1. Tiling. Can you:

(1) cover the plane with disjoint circles?
(2) cover the plane with disjoint “T”-shapes?
(3) cover the plane with disks, all of which are either disjoint or touch at at

most one point?
(4) cover R3 with disjoint circles?
(5) cover R3 with disjoint “T”-shapes?
(6) cover R3 with disks, all of which are either disjoint or touch at at most one

point?

2. Last Week’s HW

Average was, again, about 80/90. Not much really stood out, at least in this
section; contact me if you have any specific concerns about grading.

3. Surfaces

So: throughout this course, we’ve made many many references to surfaces and
to the boundaries of surfaces. However, we’ve never really properly defined what
these things are! We rectify this oversight below:

Definition 3.1. A map f : U → V is called a homeomorphism if it is 1-1, onto,
and continuous with a well-defined continuous inverse function.

Definition 3.2. A surface is a collection of points S ⊂ Rn such that

• for any point x in S,
• there is a open ball Bx in Rn centered at x such that
• there is a function f : S ∩Bx → {(x, y) : x2 + y2 < 1} sending x→ 0 that’s

1-1, onto, and continuous with continuous inverse.

Put in plain english, a surface is a collection of points that looks like the plane
everywhere, if you look closely enough – i.e. there are small neighborhoods about
every point that look like the open unit disk.

Examples of surfaces are spheres, tori, cubes, polyhedra, the plane R2 itself, and
several other objects. Nonexamples of surfaces are solid n-dimensional shapes when
n ≥ 3 (i.e. a solid ball in R3 itself), R3 itself, a pair of spheres glued together at
some single point (as no neighborhood of that point can look like an open disk),
curves and other one-dimensional shapes, and many other objects.
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However, this raises a question: what do we make of something like the disk
{(x, y) : x2 + y2 ≤ 1}? Your text and many theorems treat this as a surface,
yet under the definition above it’s not a surface – explicitly, there are no open
neighborhoods of points around the boundary that look like an open disk! Rather,
they look like open half-disks, as shown below:

So: this motivates the following definition of a surface with boundary, given
below:

Definition 3.3. A surface with boundary is a collection of points S ⊂ Rn such
that

• for any point x in S,
• there is a open ball Bx in Rn centered at x such that
• there is either a function f : S ∩Bx → {(x, y) : x2 + y2 < 1} sending x→ 0

that’s 1-1, onto, and continuous with continuous inverse, or
• there is a function f : S ∩Bx → {(x, y) : x2 + y2 < 1, x ≥ 0} sending x→ 0

that’s 1-1, onto, and continuous with continuous inverse.
Basically, a surface with boundary is a collection of points such that if you zoom
in enough, it locally looks either like the plane R2 or the upper-half-plane H+ =
{(x, y) : y ≥ 0. We call the collection of all points around which S looks like R2

points in the interior of S, and the collection of all points where S looks like H+

the boundary of S. (The closed unit disk is a surface with boundary equal to the
unit circle, for example.)

So: in your text, a surface is either a surface or a surface with boundary; in
mathematics, people tend to use the word surface even when they’re referring to a
surface that may have a boundary.

4. Stokes’s Theorem

So: with these definitions now firmly locked down, we move on to a rather
powerful theorem:

Theorem 4.1. (Stokes’s Theorem) If F is a C1 vector field and S is a surface with
boundary, we have that ∫ ∫

S

∇× F · dS =
∫
∂S

F · ds,

where by ∂S we denote the collection of curves that make up the boundary of S,
each parametrized so that the surface S lies on the left-hand side of the curve when
it is traversed (for more information, see last week’s notes.)
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So: this is another result in the vein of Green’s theorem and the like. We
illustrate its use below:

Example 4.2. For any surface without boundary (i.e. surfaces of the first kind
that we defined above) and any C1 vector field F , we have that∫ ∫

S

∇× F · dS = 0

Proof. This follows trivially from Stokes’s theorem, as such surfaces have no bound-
ary, and thus ∫ ∫

S

∇× F · dS =
∫
∂S

F · ds =
∫
∅
F · ds = 0.

�

Example 4.3. For F = (2y, 0, 0) and S the upper half of the unit hemisphere
{(x, y, z) : x2 + y2 + z2 = 1, z ≥ 0} find

∫ ∫
S
FdS.

Proof. So: note that we can write F = ∇× (0, 0,−y2). As a result, we have that∫ ∫
S

FdS =
∫ ∫

S

∇× (0, 0,−y2)ds;

applying Stokes to this integral gives us (as ∂S is traversed in the correct direction
by c(t) = (cos(t), sin(t), 0))∫ ∫

S

FdS =
∫ 2π

0

(0, 0,− sin2(t)) · (− sin(t), cos(t), 0)dt = 0.

�

5. Conservative Vector Fields

So, we change topics briefly to introduce a new object:

Definition 5.1. For F a C1 vector field defined on all but a finite number of points
in R3, we call F conservative if ∫

c

FdS = 0,

for any simple closed curve c.

Theorem 5.2. For F a C1 vector field defined on all but a finite number of points
in R3, the following conditions are equivalent:

• F is conservative; i.e. ∫
c

FdS = 0,

for any simple closed curve c.
• F = ∇f , for some function f .
• ∇ × F = 0.

So: generally, when you want to show that something is conservative, try to
show either the second or third property above (as making an argument for every
possible curve will generally be hard); conversely, to show that something is not
conservative, try to find a counterexample to the first property (i.e. find a curve
on which its integral is nonzero), or again use the third property above if it’s easy
to take a derivative of. We work a pair of examples to illustrate these methods:
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Example 5.3. We can see quickly that F (x, y, z) = (x2, y2, z2) is conservative,
because it’s the gradient of the function f(x, y, z) = x3+y3+z3

3 .

Example 5.4. We can see quickly as well that F (x, y, z) = (0, x, 0) is nonconser-
vative, because its integral about the unit disk in the xy-plane∫

∂D

F =
∫ 2π

0

(0, cos(t), 0) · (− sin(t), cos(t), 0)dt =
x+ cos(x) sin(x)

2

∣∣∣2π
0

= π 6= 0.

6. Gauss’s Theorem

So: we have one more Green’s theorem analogue (or, more properly, a divergence
theorem analogue): Gauss’s Divergence Theorem.

Theorem 6.1. For W a closed volume in R3 with boundary equal to some surface
∂W , and F a smooth vector field, we have∫ ∫ ∫

W

∇ · FdV =
∫ ∫

∂W

F · dS.

We work a pair of examples to show what’s going on here:

Example 6.2. For S the unit sphere and F the vector field (x, y, x3 − 3xy2),
calculate

∫ ∫
S
FdS.

Proof. Because F is made of polynomials and the unit ball B = {(x, y, z) : x2 +
y2 + z2 ≤ 1} clearly has S as its boundary, we can apply Gauss’s theorem to get∫ ∫

S

FdS =
∫ ∫ ∫

B

∇ · FdV =
∫ ∫ ∫

B

2dV = 2 · vol(B) = 8π/3.

�

Example 6.3. For S the surface made of the faces of the unit cube B = [0, 1] ×
[0, 1]× [0, 1] and F the vector field (xy, yz, zx), calculate

∫ ∫
S
FdS.

Proof. Because F is again made of polynomials and the unit ball B again clearly
has S as its boundary, we can apply Gauss’s theorem to get∫ ∫

S

FdS =
∫ ∫ ∫

B

∇ · FdV =
∫ 1

0

∫ 1

0

∫
+01x+ y + zdV = 3/2.
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