
THINGS ONE CAN DO WITH INTEGRALS! / GREEN’S
THEOREM

TA: PADRAIC BARTLETT

1. Random Question

Generalized Tic-Tac-Toe So: contemplate playing tic-tac-toe on a grid that’s
infinite in all directions, where you’re now trying to get 13 in a row as opposed to
the standard 3 in a row. Can you come up with a strategy to insure that you never
lose?

Question 1.1.

2. Last Week’s HW

Average was about 80/90: people did pretty well considering the absolutely epic
nature of the set. The only thing that tripped people up was the one “proof”
question, that asked you to show that for a curve C decomposed into two paths C1

and C2, that
∫
C
F = 0 was equivalent to

∫
C1
F =

∫
C̄2
F ; most people either only

showed one side of the inequality, or thought that C1 and C2 were actually the same
curve but parametrized in different ways (which is really really not true.) If you
have any questions/concerns about grading, I’d be happy to address them, as I was
the TA responsible for grading this week: shoot me an email at padraic@caltech.edu
if this is the case.

3. The Integral of a Function over a Surface

Sometimes, it’s useful to be able to study the value of functions over a surface
– say, if you have functions which told you information about the surface(local
temperature, density, distance from a point). As a result, we want to be able to
study the behavior of certain functions on surfaces; specifically, we will often like
to be able to study their average behavior, which we can do by defining the notion
of an integral over a surface. So, we do this below!

Definition 3.1. For S ⊂ R3 a surface parametrized by Φ : D → S and f : S → R
a continuous function, we define the integral of f over S to be∫ ∫

S

f(x, y, z)dS =
∫ ∫

D

f(Φ(u, v))||Φu × Φv||dudv.

Here is a (hopefully motivating) example for what we can do with this definition:

Example 3.2. So: Let S be a sphere of radius 1 centered at the origin. What is
the x-coördinate of the center of mass of S?

Proof. So: we begin by first noting that the sphere can be parametrized by

Φ(u, v) = (sin(u) cos(v), sin(u) sin(v), cos(u)), u ∈ [0, π], v ∈ [0, 2π],
1
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and that the function corresponding to the x-coördinate of a surface S is just

(3.3) f(x, y, z) = x.

So: to find the average x-coördinate, we just need to evaluate the integral

1
A(S)

·
∫ ∫

S

fdS =
1

A(S)
·
∫ π

0

∫ 2π

0

f(Φ(u, v)) · ||Φu × Φv||dvdu

=
∫ π

0

∫ 2π

0

sin(u) cos(v)·

||(cos(u) cos(v), cos(u) sin(v),− sin(u))× (− sin(u) sin(v), sin(u) cos(v), 0)||dvdu

=
∫ π

0

∫ 2π

0

sin(u) cos(v) · ||(sin2(u) cos(v), sin2(u) sin(v), sin(u) cos(u))||dvdu

=
∫ π

0

∫ 2π

0

sin(u) cos(v) ·
√

sin4(u) cos2(v) + sin4(u) sin2(v) + sin2(u) cos2(u))dvdu

=
∫ π

0

∫ 2π

0

sin(u) cos(v) · | cos(u)|dvdu

= 0,b/c sin(u) cos(v) · | cos(u)| is periodic with period 2π in u.

We can use similar work to show that the same will hold for the average y and z
coördinates – this tells us that the center of mass of our sphere is at the origin! as
we hoped. This method, by the way, works for any surface; those of you who will
become engineers will do this a lot, I think. �

4. The Integral of a Vector Field over a Surface

So: for similar reasons to the ones stated above, we often will want to take
integrals of vector fields over surfaces as well. The following definition shows us
how:

Definition 4.1. For S ⊂ R3 a surface parametrized by Φ : D → S and F : S → R3

a continuous vector field, we define the integral of F over S to be∫ ∫
S

F (x, y, z)dS =
∫ ∫

D

F (Φ(u, v)) · ||Φu × Φv||dudv.

To illustrate how we do this, consider the following question:

Example 4.2. So: let S be the section of the monkey saddle f(x, y) = x3 − 3xy2

with x, y coördinates lying in the box [−1, 1] × [−1, 1]. Let F be the vector field
defined by a steady snowfall, F (x, y, z) = (0, 0, 2) (where this is given in inches3

per hour.) Find the total amount of snow that accumulates on the monkey saddle
in a hour.

Proof. So: because the monkey saddle is a surface given by the graph of a function,
we have an easy, standard parametrization of it as

Φ(x, y) = (x, y, f(x, y) = x3 − 3xy2), (x, y) ∈ [−1, 1]× [−1, 1].
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So: we calculate.∫ ∫
S

F · ds =
∫ 1

−1

∫ 1

−1

(0, 0, 2) · (Φx × Φy)dxdy

=
∫ 1

−1

∫ 1

−1

(0, 0, 2) · ((1, 2, 3x2 − 3y2)× (0, 1,−6xy))dxdy

=
∫ 1

−1

∫ 1

−1

(0, 0, 2) · (3y2 − 3x2, 6xy, 1)dxdy

=
∫ 1

−1

∫ 1

−1

2dxdy

= 8in3/hr.

So 8 inches of snow will accumulate on our surface in a hour. Note that this was
actually completely independent of the function f(x, y) that we used –i.e. that we
would have gotten the same results for any surface that’s the graph of (x, y, f(x, y))
with x, y ∈ [−1, 1]2; this is as expected, because the z-coördinate is really irrelevant
here! we only care about the xy-dimensions for figuring out how much snow is held
here. �

5. Green’s Theorem

So, before we can define Green’s theorem, we have to first take a little foray into
topology:

Definition 5.1. So: we call a path γ : [a, b] → Rn a simple closed curve iff it
satisfies the following conditions:

• γ(0) = γ(1).
• γ is continuous.
• γ is 1-1.

Intuitively: simple closed curves are curves that don’t intersect themselves any-
where.

Proposition 5.2. Suppose that we have a region D ⊂ R2 whose boundary can be
broken up into simple closed curves γ1 . . . γn, none of which intersect each other.
Then, we can orient the curves γi – i.e. define a canonical direction to “walk”
about any of the curves γi – such that if you were to walk along any such curve in
its oriented direction, the region D would always lie on your left-hand-side.

If you are not persuaded, try drawing some regions that fit the criteria above,
and try just orienting them; you’ll be surprised.

So: with this machinery defined, we can state Green’s theorem:

Definition 5.3. Take a region D ⊂ R2 whose boundary can be broken up into
simple closed curves γ1 . . . γn, all of which are oriented as paths γ+

i as above, and
pick a pair of C1 functions P,Q : D → R. Then we have the following identity:∫

γ+
1 +...γ+

n

Pdx+Qdy =
∫ ∫

D

(
∂Q

∂x
− ∂P

∂y

)
dxdy

By the way: this is AMAZINGLY COOL. You’re controlling a function’s behav-
ior with its derivatives! Completely local data is telling you what’s happening on
a global scale! It’s ridiculously useful.
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So: to illustrate this theorem’s typical use and power, we work a pair of examples
below:

Example 5.4. Show that for any constants α, β and any simple closed curve c+,
that ∫

c+
αdx+ βdy = 0.

Proof. So: because constant functions are C∞, if we denote the region encompassed
by c+ by D, we have that∫

c+
αdx+ βdy = ±

∫ ∫
D

(0− 0)dxdy = 0.

End of proof! �

Example 5.5. Calculate∫
c+

(3y2 + x3 + y cos(x))dx+ (6xy + y2 + sin(x))dy,

where c+ is the curve that traverses a nonagon of unit-length sides in the counter-
clockwise direction.

Proof. So: this illustrates one of the key and most frequently used properties of
Green’s theorem, which is to turn atrocious-looking integrals into nonatrocious
things that are often 0. I.e.: note that both 3y2 +x3 +y cos(x) and 6xy+y2 +sin(x)
are C1 because they’re composed of polynomials and trig functions, and that c+ is
a SCC encloses a region that Green’s theorem applies to: so we can apply Green’s
theorem to get∫
c+

(3y2+x3+y cos(x))dx+(6xy+y2+sin(x))dy =
∫ ∫

D

(6y+cos(x))−(6y+cos(x))dydx = 0.

End of proof! �

5.1. Area. Another useful application of Green’s theorem is to find area: i.e. for
a region D with boundary c+, we have that

A(D) = 1/2
∫
c

xdy − ydx.

An example is calculated below:

Example 5.6. Find the area of a circle with radius r.

Proof. So: the boundary of a circle of radius r is parametrized by the map c(θ) =
(r cos(θ), r sin(θ)), θ ∈ [0, 2π]; so, by the equation above, we have that

A(Dr) = 1/2
∫
c

xdy − ydx = 1/2
∫ 2π

0

r2 cos2(θ) + r2 sin2(θ)dθ = πr2.

�
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5.2. The Divergence Theorem. Another useful form of Green’s theorem is the
Divergence Theorem, which makes the relation that Green’s theorem gives between
local and global behavior of a function more obvious: we state it below.

Definition 5.7. For D a region on which Green’s theorem holds, ∂D its boundary
parametrized in the left-hand-oriented manner by c+(t), and n(t) the outward-
pointing normal vector to ∂D at the point c+(t), we have that∫

∂D

F · nds =
∫ ∫

D

div(F ) · dA.

(Note that the outward-pointing normal vector is given by ((c+2 )′(t),−(c+1 )′(t))/||((c+2 )′(t),−(c+1 )′(t))||
for any given parametrization c+ of the boundary.)

So: this is a useful calculational tool, as we show below:

Example 5.8. For D the unit circle, F (x, y) = (xy, x+ y), find
∫
∂D

F · n.

Proof. So: by the divergence theorem, we have∫
∂D

F · n =
∫ ∫

x2+y2≤1

(y + 1)dxdy

=
∫ 1

0

∫ 2π

0

(r cos(θ) + 1)rdrdθ

=
∫ 1

0

2πr = πr.

�


