MA1C, WEEK 5: REVIEW! (MIDTERM)

TA: PADRAIC BARTLETT

These notes, like all notes, can be found on my website.

1. Last Week's HW

Average: was around 87%; so, as a result, there isn't too much to say here.

2. Random Question

Question 2.1. So: suppose that you've been teleported back to Rome, and you've AGAIN found yourself in a gladiatorial arena. (The life of a mathematician is hard.) This arena is in the shape of a perfect circle; at each point with rational argument (i.e .angle) of the circle, there is a lion, which is free to run along the boundary of the triangle but cannot escape the boundary of the triangle due to a complicated system of chains. Suppose that the lions here are all point-lions and are not tigers; suppose further that both you and the lions move at $10 \mathrm{~m} / \mathrm{s}$, can pivot and change direction instantly, are arbitrarily brilliant, and know no fear. Can you escape from the circle?

3. Midterm Review topics

3.1. Level curves. Be aware of what they are: i.e. for a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a constant $c \in \mathbb{R}$, a level curve for $f=c$ is simply the graph of all of the points in \mathbb{R}^{n} such that f evaluated at these points is c. An example is worked in the notes for week 1, and several are done in your text; because everyone seems to know how to do this, we omit an example here.
3.2. Limits, in the multidimensional setting. Know how to compute limits, via either $\epsilon-\delta$ arguments or through showing that function is continuous; also, know how to show that a function doesn't have a limit at a point. We work two examples below:

Example 3.1. We claim that

$$
f(x, y, z)=\frac{x 2+y^{2}+z^{2}}{|x|+|y|+|z|}
$$

has limit 0 at 0 .
Proof. So: note that because $|x|=\sqrt{x^{2}}$, and because square root is concave, that we have

$$
f(x, y, z)=\frac{x 2+y^{2}+z^{2}}{|x|+|y|+|z|} \leq \frac{x 2+y^{2}+z^{2}}{\sqrt{x 2+y^{2}+z^{2}}}=\sqrt{x 2+y^{2}+z^{2}}
$$

for all points not equal to $(0,0,0)$. But $\sqrt{x 2+y^{2}+z^{2}}$ is a continuous function, and it goes to 0 as (x, y, z) goes to 0 ; so, because f is a strictly postive function,
it's bounded at all times between 0 and a function which goes to 0 as it goes to $(0,0,0)$. So, by the squeeze theorem, we have that $\lim _{(x, y, z) \rightarrow 0} f(x, y, z)$ is 0 .
Example 3.2. We claim that the function

$$
f(x, y)=\frac{x y}{x^{2}+y^{2}}
$$

has no limit at 0 .
Proof. So: along the path given by the line $y=0$, this function is

$$
f(x, 0)=\frac{x \cdot 0}{x^{2}+0^{2}}=0
$$

and thus the limit as (x, y) goes to zero along this path is 0 .
Conversely, along the path given by the line $y=x$, this function is

$$
f(x, x)=\frac{x^{2}}{x^{2}+x^{2}}=\frac{1}{2}
$$

and thus the limit as (x, y) goes to zero along this path is $1 / 2$. Because these values are different, f cannot have a well-defined limit as (x, y) goes to 0 , because if f has a limit a at 0 , it must approach a along any path that goes to 0 .
3.3. Partial derivatives. Know how they're defined: i.e. for a function $f: \mathbb{R}^{n} \rightarrow$ \mathbb{R}, the partial derivative of f with respect to its $i^{t h}$ coördinate is

$$
\frac{\partial(f)}{\partial x_{i}}\left(a_{1} \ldots a_{n}\right):=\lim _{h \rightarrow 0} \frac{f\left(a_{1}, \ldots a_{i}+h, \ldots a_{n}\right)-f\left(a_{1} \ldots a_{n}\right)}{h}
$$

We work an example below:
Example 3.3. Show that

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x^{3} y^{2}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\
0, & \text { otherwise }
\end{array}\right.
$$

has $\frac{\partial f}{\partial x}$ equal to 0 at 0 .
Proof. So: by definition, the partial derivative of f at 0 is

$$
\lim _{(h) \rightarrow 0} \frac{\frac{h^{3} \cdot 0^{2}}{h^{2}+0^{2}}-0}{h}=\lim _{(h) \rightarrow 0} \frac{0}{h}=0
$$

So the partial derivative of this function at 0 exists and is 0 .
3.4. Total derivatives. So: the total derivative of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the $m \times n$ matrix defined by

$$
D f(a)=\left[\frac{\partial f_{i}}{\partial x_{j}}(a)\right] .
$$

This definition allows us to define whether a function f is differentiable at a point x_{0} : we say that this holds whenever

$$
\lim _{x t o 0} \frac{\|f(x)-f(a)-D f(a) \cdot(x-a)\|}{\|x-a\|}=0
$$

A useful fact that we often need is that if a function is C^{1}, it is differentiable this saves us the trouble of calculating things like the limit above. The converse, however, is not true: see your text or the notes from week 2 for an example of a differentiable function which is not C^{1}.
3.5. Chain rule. So: the chain rule says that for $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, g$ differentiable at x_{0}, f differentiable at $g\left(x_{0}\right)$, we have that

$$
D(f \circ g)\left(x_{0}\right)=(D f)\left(g\left(x_{0}\right)\right) \cdot(D g)\left(x_{0}\right)
$$

(the key points being that the domain of f is the range of g, and that both functions are differentiable where it's needed.)

We work an example of how to use the chain rule below:
Example 3.4. Let $f(x, y, z)=x y z$ and $g(t)=(1, t, \sin (t))$. Find $D(f \circ g)$ using the chain rule.

Proof. So: we have that both functions are C^{∞}, as f is a polynomial and g is component-wise a series of C^{∞} functions from $\mathbb{R} \rightarrow \mathbb{R}$: as well, the domain of f is \mathbb{R}^{3}, which coincides with the range of g. So we can indeed apply the chain rule, and we then get

$$
\begin{aligned}
D(f \circ g)(t) & =(D f)(g(t)) \cdot(D g)(t) \\
& =\left(\begin{array}{lll}
\left.y z\right|_{g(t)} & \left.x z\right|_{g(t)} & \left.\left.x y\right|_{g(t)}\right) \cdot\left(\begin{array}{c}
0 \\
1 \\
\cos (t)
\end{array}\right) \\
& =\left(\begin{array}{lll}
t \sin (t) & \sin (t) & t
\end{array}\right) \cdot\left(\begin{array}{c}
0 \\
1 \\
\cos (t)
\end{array}\right) \\
& =\sin (t)+t \cos (t) .
\end{array}\right. \text {. }
\end{aligned}
$$

So this is the derivative of $f \circ g$.
3.6. Higher-order partial derivatives. So: we defined the higher-order partial derivatifes of a function f recursively by

$$
\frac{\partial^{m} f}{\partial x_{i_{1}} \ldots \partial x_{i_{n}}}=\frac{\partial}{\partial x_{i_{1}}}\left(\frac{\partial}{\partial x_{i_{2}}}\left(\ldots \frac{\partial f}{\partial x_{i_{n}}}\right)\right)
$$

where we calculate each individual partial derivative in the normal fashion. Simply know how to do this: also, know that if the function f is C^{n}, then if we're computing a n-th partial derivative, we can do this in any order we like: i.e. it doesn't matter in which order you differentiate.
3.7. Extrema. So: for $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, where U is an open set and x_{0} is a point in U, we say that x_{0} is a critical point of f if either $(D f)\left(x_{0}\right)=0$, (where by $(D f)\left(x_{0}\right)=0$ we mean that every entry of the $1 \times n$ matrix $(D f)\left(x_{0}\right)$ is 0 , or f doesn't have a defined derivative at this point.

If f is C^{2}, we can say more: i.e.

- f has a local minimum at x_{0} iff x_{0} is a critical point and the matrix $\left[\frac{\partial^{2} f}{\partial x_{i} x_{j}}\left(x_{0}\right)\right]$ has only positive eigenvalues (i.e. $\operatorname{Hf}\left(x_{0}\right)$ is positive-definite.)
- f has a local maximum at x_{0} iff x_{0} is a critical point and the matrix $\left[\frac{\partial^{2} f}{\partial x_{i} x_{j}}\left(x_{0}\right)\right]$ has only negative eigenvalues (i.e. $H f\left(x_{0}\right)$ is negative-definite.)
- f has a saddle point at x_{0} iff x_{0} is a critical point and the matrix $\left[\frac{\partial^{2} f}{\partial x_{i} x_{j}}\left(x_{0}\right)\right]$ has a positive eigenvalue and a negative eigenvalue.
We work an example below:

Example 3.5. Show that the functions $f_{1}(x, y)=x^{2}+y^{2}, f_{2}(x, y)=x^{2}-y^{2}, f_{3}(x, y)=$ $-x^{2}-y^{2}$ have a local minimum, saddle point, and local maximum at $(0,0)$, respectively.

Proof. So: note that the matrix of second partial derivatives of

- f_{1} at $(0,0)$ is $M_{1}:=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$,
- f_{2} at $(0,0)$ is $M_{2}:=\left(\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right)$, and
- f_{3} at $(0,0)$ is $M_{3}:=\left(\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right)$.

As a result, we have that

- all of the eigenvalues of M_{1} are positive, so f has a local minimum at $(0,0)$,
- one eigenvalue of M_{2} is positive and one is negative, so f has a local minimum at $(0,0)$, and
- all of the eigenvalues of M_{3} are negative, so f has a local maximum at $(0,0)$.
3.8. Lagrange Multipliers. So: the method of Lagrange multipliers is outlined below. Suppose that
- $f, g: U \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ are C^{1} functions,
- S is the level set $g(x)=c$, for some constant c, and
- x_{0} is a point in S.

Then whenever $\left.f\right|_{S}$, the function f restricted to the set S, has a critical point at x_{0}, there is some $\lambda \in \mathbb{R}$ such that

$$
\nabla f\left(x_{0}\right)=\lambda \nabla f\left(x_{0}\right)
$$

So: using this method, we can classify all of the critical points of a function f (and thus all potential local minima and maxima) on any closed set U with boundary given by the level curve of some C^{1} function g - we can do this by finding all of the critical points on the interior of U by our normal method of classifying extrema (looking for points where $D f=0$,) and using the method of Lagrange multipliers on the boundary.

We furthermore know that if U is closed and bounded, and f is continuous, that f must attain an absolute maximum and a minimum on U (by some theorem in your text;) so, if we want to find the absolute maximum and minimum of a function on a set, we can simply use the methods above.

We work an example below:
Example 3.6. For $f(x, y)=\frac{x^{2} y}{2}$, find all of the critical points of f on the unit disk \mathbb{D}, state whether f has a absolute \max / \min on \mathbb{D}, and (if so) find it.

Proof. So: first note that f is continuous on \mathbb{D}, and \mathbb{D} is bounded and closed; so f indeed has an absolute maximum and minimum on this set, and furthermore that it is some critical point of f.

So, we break \mathbb{D} into two pieces: the open set of all points (x, y) with $x^{2}+y^{2}<1$, and the unit circle $x^{2}+y^{2}=1$.

On the first set, we know that the only critical point are those where $D f=$ $\left(x y, x^{2}\right)$ is 0 ; i.e. all of the points of the form $(0, y)$.

On the second set, we know that the only critical points are those where we can find a λ such that

$$
\nabla f=\left(x y, x^{2}\right)=\lambda \cdot \nabla g=(2 x, 2 y)
$$

i.e. (via algebra) the four points $(0, \pm 1),\left(\pm \sqrt{\frac{-1+\sqrt{5}}{2}}, \frac{-1+\sqrt{5}}{2}\right)$, Evaluating gives us that $f(x, y)=0$ on all points with $x=0$; for the two critical points $\left(\pm \sqrt{\frac{-1+\sqrt{5}}{2}}, \frac{-1+\sqrt{5}}{2}\right)$, we have that $f\left(\left(\pm \sqrt{\frac{-1+\sqrt{5}}{2}}, \frac{-1+\sqrt{5}}{2}\right)= \pm\left(\frac{-1+\sqrt{5}}{2}\right)^{3 / 2}\right.$. As a result, we have that the absolute maximum of f on the unit disk is $\left(\frac{-1+\sqrt{5}}{2}\right)^{3 / 2}$ and the absolute minimum of f on the unit disk is $\left(\frac{-1+\sqrt{5}}{2}\right)^{3 / 2}$.

3.9. Vector Fields, Flow Lines, Div, Grad, and Curl. So:

- A vector field on a set U is a map $F: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
- A flow line for a given vector field F on U is a path $\gamma: \mathbb{R} \rightarrow U$ such that at any point in \mathbb{R},

$$
\gamma^{\prime}(t)=F(\gamma(t))
$$

- For $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, the divergence of F, denoted $\operatorname{div}(F)$ or $\nabla \cdot F$, is given by

$$
\left(\frac{\partial F_{1}}{\partial x}, \frac{\partial F_{2}}{\partial y}, \frac{\partial F_{3}}{\partial z}\right)
$$

- For $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, the curl of F, denoted $\operatorname{curl}(F)$ or $\nabla \times F$, is given by

$$
\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}, \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}, \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right)
$$

There are a table of important properties of these operators on page 306 of your text: we reproduce the two most useful here.

Proposition 3.7. For any C^{2} function $f, \operatorname{curl}(\nabla f)=0$ (i.e. the curl of the gradient is 0.) For any C^{2} vector field F, $\operatorname{div}(\operatorname{curl}(F))=0$ (i.e. the divergence of the curl is 0.)

