
MA1C, WEEK 5: REVIEW! (MIDTERM)

TA: PADRAIC BARTLETT

These notes, like all notes, can be found on my website.

1. Last Week’s HW

Average: was around 87%; so, as a result, there isn’t too much to say here.

2. Random Question

Question 2.1. So: suppose that you’ve been teleported back to Rome, and you’ve
AGAIN found yourself in a gladiatorial arena. (The life of a mathematician is
hard.) This arena is in the shape of a perfect circle; at each point with rational
argument (i.e .angle) of the circle, there is a lion, which is free to run along the
boundary of the triangle but cannot escape the boundary of the triangle due to a
complicated system of chains. Suppose that the lions here are all point-lions and
are not tigers; suppose further that both you and the lions move at 10m/s, can pivot
and change direction instantly, are arbitrarily brilliant, and know no fear. Can you
escape from the circle?

3. Midterm review topics

3.1. Level curves. Be aware of what they are: i.e. for a function f : Rn → R and
a constant c ∈ R, a level curve for f = c is simply the graph of all of the points in
Rn such that f evaluated at these points is c. An example is worked in the notes
for week 1, and several are done in your text; because everyone seems to know how
to do this, we omit an example here.

3.2. Limits, in the multidimensional setting. Know how to compute limits,
via either ε − δ arguments or through showing that function is continuous; also,
know how to show that a function doesn’t have a limit at a point. We work two
examples below:

Example 3.1. We claim that

f(x, y, z) =
x2 + y2 + z2

|x|+ |y|+ |z|
has limit 0 at 0.

Proof. So: note that because |x| =
√
x2, and because square root is concave, that

we have

f(x, y, z) =
x2 + y2 + z2

|x|+ |y|+ |z|
≤ x2 + y2 + z2√

x2 + y2 + z2
=
√
x2 + y2 + z2

for all points not equal to (0, 0, 0). But
√
x2 + y2 + z2 is a continuous function,

and it goes to 0 as (x, y, z) goes to 0; so, because f is a strictly postive function,
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it’s bounded at all times between 0 and a function which goes to 0 as it goes to
(0, 0, 0). So, by the squeeze theorem, we have that lim(x,y,z)→0 f(x, y, z) is 0. �

Example 3.2. We claim that the function

f(x, y) =
xy

x2 + y2

has no limit at 0.

Proof. So: along the path given by the line y = 0, this function is

f(x, 0) =
x · 0

x2 + 02
= 0

and thus the limit as (x, y) goes to zero along this path is 0.
Conversely, along the path given by the line y = x, this function is

f(x, x) =
x2

x2 + x2
=

1
2

and thus the limit as (x, y) goes to zero along this path is 1/2. Because these values
are different, f cannot have a well-defined limit as (x, y) goes to 0, because if f has
a limit a at 0, it must approach a along any path that goes to 0. �

3.3. Partial derivatives. Know how they’re defined: i.e. for a function f : Rn →
R, the partial derivative of f with respect to its ith coördinate is

∂(f)
∂xi

(a1 . . . an) := lim
h→0

f(a1, . . . ai + h, . . . an)− f(a1 . . . an)
h

.

We work an example below:

Example 3.3. Show that

f(x, y) =

{
x3y2

x2+y2 , (x, y) 6= (0, 0)
0, otherwise.

has ∂f
∂x equal to 0 at 0.

Proof. So: by definition, the partial derivative of f at 0 is

lim
(h)→0

h3·02

h2+02 − 0
h

= lim
(h)→0

0
h

= 0.

So the partial derivative of this function at 0 exists and is 0. �

3.4. Total derivatives. So: the total derivative of a function f : Rn → Rm is the
m× n matrix defined by

Df(a) =
[
∂fi

∂xj
(a)
]
.

This definition allows us to define whether a function f is differentiable at a
point x0: we say that this holds whenever

lim
x to0

||f(x)− f(a)−Df(a) · (x− a)||
||x− a||

= 0.

A useful fact that we often need is that if a function is C1, it is differentiable –
this saves us the trouble of calculating things like the limit above. The converse,
however, is not true: see your text or the notes from week 2 for an example of a
differentiable function which is not C1.
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3.5. Chain rule. So: the chain rule says that for f : Rm → Rp, g : Rn → Rm, g
differentiable at x0, f differentiable at g(x0), we have that

D(f ◦ g)(x0) = (Df)(g(x0)) · (Dg)(x0).

(the key points being that the domain of f is the range of g, and that both functions
are differentiable where it’s needed.)

We work an example of how to use the chain rule below:

Example 3.4. Let f(x, y, z) = xyz and g(t) = (1, t, sin(t)). Find D(f ◦ g) using
the chain rule.

Proof. So: we have that both functions are C∞, as f is a polynomial and g is
component-wise a series of C∞ functions from R→ R: as well, the domain of f is
R3, which coincides with the range of g. So we can indeed apply the chain rule,
and we then get

D(f ◦ g)(t) = (Df)(g(t)) · (Dg)(t)

=
(
yz|g(t) xz|g(t) xy|g(t)

)
·

 0
1

cos(t)


=
(
t sin(t) sin(t) t

)
·

 0
1

cos(t)


= sin(t) + t cos(t).

So this is the derivative of f ◦ g. �

3.6. Higher-order partial derivatives. So: we defined the higher-order partial
derivatifes of a function f recursively by

∂mf

∂xi1 . . . ∂xin

=
∂

∂xi1

(
∂

∂xi2

(
. . .

∂f

∂xin

))
,

where we calculate each individual partial derivative in the normal fashion. Simply
know how to do this: also, know that if the function f is Cn, then if we’re computing
a n-th partial derivative, we can do this in any order we like: i.e. it doesn’t matter
in which order you differentiate.

3.7. Extrema. So: for f : U ⊂ Rn → R, where U is an open set and x0 is a point
in U , we say that x0 is a critical point of f if either (Df)(x0) = 0, (where by
(Df)(x0) = 0 we mean that every entry of the 1 × n matrix (Df)(x0) is 0,) or f
doesn’t have a defined derivative at this point.

If f is C2, we can say more: i.e.
• f has a local minimum at x0 iff x0 is a critical point and the matrix[

∂2f
∂xixj

(x0)
]

has only positive eigenvalues (i.e. Hf(x0) is positive-definite.)
• f has a local maximum at x0 iff x0 is a critical point and the matrix[

∂2f
∂xixj

(x0)
]

has only negative eigenvalues (i.e. Hf(x0) is negative-definite.)

• f has a saddle point at x0 iff x0 is a critical point and the matrix
[

∂2f
∂xixj

(x0)
]

has a positive eigenvalue and a negative eigenvalue.
We work an example below:
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Example 3.5. Show that the functions f1(x, y) = x2+y2, f2(x, y) = x2−y2, f3(x, y) =
−x2−y2 have a local minimum, saddle point, and local maximum at (0, 0), respec-
tively.

Proof. So: note that the matrix of second partial derivatives of

• f1 at (0,0) is M1 :=
(

2 0
0 2

)
,

• f2 at (0,0) is M2 :=
(

2 0
0 −2

)
, and

• f3 at (0,0) is M3 :=
(
−2 0
0 −2

)
.

As a result, we have that
• all of the eigenvalues of M1 are positive, so f has a local minimum at (0,0),
• one eigenvalue of M2 is positive and one is negative, so f has a local mini-

mum at (0,0), and
• all of the eigenvalues of M3 are negative, so f has a local maximum at (0,0).

�

3.8. Lagrange Multipliers. So: the method of Lagrange multipliers is outlined
below. Suppose that

• f, g : U ⊆ Rn → R are C1 functions,
• S is the level set g(x) = c, for some constant c, and
• x0 is a point in S.

Then whenever f |S , the function f restricted to the set S, has a critical point at
x0, there is some λ ∈ R such that

∇f(x0) = λ∇f(x0).

So: using this method, we can classify all of the critical points of a function f (and
thus all potential local minima and maxima) on any closed set U with boundary
given by the level curve of some C1 function g – we can do this by finding all of
the critical points on the interior of U by our normal method of classifying extrema
(looking for points where Df = 0,) and using the method of Lagrange multipliers
on the boundary.

We furthermore know that if U is closed and bounded, and f is continuous, that
f must attain an absolute maximum and a minimum on U (by some theorem in
your text;) so, if we want to find the absolute maximum and minimum of a function
on a set, we can simply use the methods above.

We work an example below:

Example 3.6. For f(x, y) = x2y
2 , find all of the critical points of f on the unit

disk D, state whether f has a absolute max/min on D, and (if so) find it.

Proof. So: first note that f is continuous on D, and D is bounded and closed; so f
indeed has an absolute maximum and minimum on this set, and furthermore that
it is some critical point of f .

So, we break D into two pieces: the open set of all points (x, y) with x2 +y2 < 1,
and the unit circle x2 + y2 = 1.

On the first set, we know that the only critical point are those where Df =
(xy, x2) is 0; i.e. all of the points of the form (0, y).
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On the second set, we know that the only critical points are those where we can
find a λ such that

∇f = (xy, x2) = λ · ∇g = (2x, 2y);

i.e. (via algebra) the four points (0,±1),
(
±
√
−1+

√
5

2 , −1+
√

5
2

)
, Evaluating gives us

that f(x, y) = 0 on all points with x = 0; for the two critical points
(
±
√
−1+

√
5

2 , −1+
√

5
2

)
,

we have that f(
(
±
√
−1+

√
5

2 , −1+
√

5
2

)
= ±

(
−1+

√
5

2

)3/2

. As a result, we have that

the absolute maximum of f on the unit disk is
(
−1+

√
5

2

)3/2

and the absolute min-

imum of f on the unit disk is
(
−1+

√
5

2

)3/2

. �

3.9. Vector Fields, Flow Lines, Div, Grad, and Curl. So:
• A vector field on a set U is a map F : U ⊂ Rn → Rn.
• A flow line for a given vector field F on U is a path γ : R→ U such that

at any point in R,
γ′(t) = F (γ(t)).

• For F : R3 → R3, the divergence of F , denoted div(F ) or ∇·F , is given by(
∂F1

∂x
,
∂F2

∂y
,
∂F3

∂z

)
• For F : R3 → R3, the curl of F , denoted curl(F ) or ∇× F , is given by(

∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

)
There are a table of important properties of these operators on page 306 of your

text: we reproduce the two most useful here.

Proposition 3.7. For any C2 function f , curl(∇f) = 0 (i.e. the curl of the
gradient is 0.) For any C2 vector field F , div(curl(F )) = 0 (i.e. the divergence of
the curl is 0.)
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