
MA1C, WEEK 3: THINGS YOU CAN DO WITH DERIVATIVES.

TA: PADRAIC BARTLETT

These notes, like all future notes, can be found on my website.

1. Last Week’s HW

Average: was around 80% for this section. Major issues that cropped up were
understanding the last question (Marsden/Tromba, sec. 2.5, question 24 – the ques-
tion that asked you to spot the flaw in applying the chain rule), basic elements of
calculational rigor, understanding the definition of partial derivatives on questions
where the function is defined piecewise, and just clarity issues. If you have any
questions or desire for clarification, I’m more than happy to meet with people and
talk about any questions they have, whether in office hours or at other times.

2. Random Question

Question 2.1. Consider the sequence of numbers
• a1 = 1
• a2 = 11
• a3 = 21
• a4 = 1211
• a5 = 111221
• a6 = 312211
• a7 = 13112221
• . . .

Find the pattern in the sequence above; show that it is always increasing; and show
that the only digits that ever appear in this sequence are 1,2, and 3.

3. Directional Derivatives

So: for f a function from Rn to R, recall that we defined

∇f := Df =
(

∂f

∂x1
. . .

∂f

∂xn

)
and called this the “gradient” of f . It turns out that our use of the word “gradient”
here is in fact motivated from the colloquial meaning of gradient as a slope or
inclination: this is because the gradient of a function is actually a tool we can use
to find the directional derivative (i.e. slope in a given direction) of our function at
any point!

Explicitly, first recall the following definition:

Definition 3.1. For a function f : Rn → R, x0 ∈ Rn, and a vector v ∈ Rn, we
defined the directional derivative of f at x0 along v to be

d

dt
f(x0 + tv)

∣∣∣∣
t=0

.
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Then, we have the following theorem:

Theorem 3.2.
d

dt
f(x0 + tv)

∣∣∣∣
t=0

= ∇f(x0) · v.

In other words, the gradient completely determines the directional derivative: to
understand a local linear approximation to a function at a given point, it suffices to
simply have its gradient. This is kind of neat, and makes calculations rather easy:

Example 3.3. Let f(x, y, z) = x2y2z2. Find f ’s directional derivatives in all di-
rections at all points in R3.

Proof. Calculating gives us that
• ∂f

∂x = 2xy2z2,

• ∂f
∂y = 2x2yz2,

• ∂f
∂z = 2x2y2z.

Thus, we have that the directional derivative of f at (x0, y0, z0) in the direction
(v1, v2, v3) is

∇f(x, y, z) · (v1, v2, v3) = 2x0y0z0 · (v1y0z0 + v2x0z0 + v3x0y0) .

�

4. Higher-Order Derivatives

Definition 4.1. So: for a function f : Rn → R, we denote the higher-order partial
derivatives of f by writing

∂mf

∂xi1 . . . ∂xin

,

and define them by
∂mf

∂xi1 . . . ∂xin

=
∂

∂xi1

(
∂

∂xi2

(
. . .

∂f

∂xin

))
,

where we calculate each individual partial derivative using our normal definition in
terms of limits,

∂(f)
∂xi

(a1 . . . an) := lim
h→0

f(a1, . . . ai + h, . . . an)− f(a1 . . . an)
h

.

Higher-order partial derivatives have some nice properties. One of the more
useful is the following:

Proposition 4.2. If f is C2, then

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.

It turns out that this proposition gives as an corollary the following theorem:

Theorem 4.3. f is Cn, then for any m ≤ n and any permutation (i.e. rearrange-
ment) of the variables xi1 . . . xim , we have that

∂mf

∂xi1 . . . ∂xim

=
∂2f

∂xiσ(1) . . . ∂xiσ(m)

.

In other words, if a function is Cn, for any m ≤ n we can take its m-th order
derivatives in any order we please.
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(You are asked to show a special case of this theorem on your HW, so *don’t*
use this theorem to prove things on HW #3!)

The way the proof above goes is simply by repeated application of the C2 case:
we prove an illuminating special case of this theorem below.

Example 4.4. If f : R2 → R is C4, then

∂4f

∂x2∂y2
=

∂4f

∂y2∂x2
.

Proof.

∂4f

∂x2∂y2
=

∂

∂x

∂

∂x

∂

∂y

∂f

∂y

=
∂

∂x

∂

∂y

∂

∂x

∂f

∂y
, because

∂f

∂y
is C2

=
∂

∂y

∂

∂x

∂

∂x

∂f

∂y
, because

∂2f

∂x∂y
is C2

=
∂

∂y

∂

∂x

∂

∂y

∂f

∂x
, because f is C2

=
∂

∂y

∂

∂y

∂

∂x

∂f

∂x
, because

∂f

∂x
is C2.

�

The idea above is that we can use the C2 proof to switch any two pairs of partial
derivatives, and then iterate this process to simply jumble things up in any fashion
we like.

5. Taylor Series

So, recall the definition of a Taylor series in one dimension from first quarter:
for f : R → R an infinitely-differentiable function, and h, x0 points in R, we have
that

f(x0 + h) = f(x0) + f ′(x0) · h +
f ′′(x0)

2!
· h2 + . . .

f (n)(x0)
n!

· hn + Rn(x0, h),

where Rn(x0, h) is some infintely-differentiable remainder function such that

lim
n→∞

Rn(x0, h)
hn

= 0.

So, we would like to have a similar theorem in higher dimensions: however, as
we’ve discussed before at length, the notion of “derivative” in higher dimensions is
a complicated widget, and thus coming up with good analogues to things like “the
nth derivative of f” is initially hard. However, we can in fact do this! We describe
the case for the second-order Taylor series below:

Definition 5.1. Suppose that f : Rn → R is a C2 function. We define the Hessian
of f at a point x0 as the function

H(f(x0))(h) =
1
2

n∑
i,j=1‘

hihj ·
∂2f

∂xi∂xj
(x0).

=
1
2
· (h1, . . . hn) ·

(
∂2f

∂xi∂xj

)n

i,j=1

· (h1, . . . hn)T
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We think of this as something which is analogous to the “second derivative” of f ;
many times, where in the one-dimensional case we would write f ′′(x), we will use
the Hessian of f in the multidimensional case.

Definition 5.2. If f : Rn → R is a C2 function, the second-order Taylor series
approximation to f around x0 is

f(x0) +∇(f)(x0) · h + H(f(x0))(h) + R2(x0, h),

where R2(x0, h) is some C2 remainder function that satisfies

lim
n→∞

R2(x0, h)
||h||2

= 0.

It can be proven that this approximation always exists whenever f is a C2

function.
So: this allows us to, just as in the one-dimensional case, approximate f by

a polynomial, which can allow us to get very good ideas for what f is in certain
neighborhoods even if we cannot calculate it directly; this is frequently invaluable
in many scientific fields. We calculate a simple example below:

Example 5.3. For f(x, y) = − cos(xy), calculate the second-order Taylor series
approximation for f around (0, 0).

Proof. So: note that
• ∂f

∂x = y sin(xy),
• ∂f

∂y = x sin(xy),

• ∂2f
∂x2 = y2 cos(xy),

• ∂2f
∂y2 = x2 cos(xy),

• ∂2f
∂y∂x = ∂2f

∂x∂y = sin(xy) + xy cos(xy),

and thus that the Taylor series for f around the point (x, y) is

f(x + h1, y + h2) =f(x, y) +∇(f)(x, y) · (h1, h2) + H(f(x, y))(h1, h2) + R2((x, y), (h1, h2))

=− cos(xy) + (h1 · y sin(xy) + h2 · x sin(xy))

+
1
2

(h2
1 · y2 cos(xy) + h2

2 · x2 cos(xy) + 2h1h2(sin(xy) + xy cos(xy))) + R2((x, y), h);

plugging in (x, y) = (0, 0) then gives that

f(h1, h2) =− 1 + 0 + 0 + R2(0, 0, h) = R2((0, 0), h)− 1.

�

6. Extrema

So: it turns out that, just like in the one-dimensional case, we can use our
knowledge of derivatives to classify the extremal points (critical points, maxima
and minima) of a function. We illustrate the process below:

Proposition 6.1. For x0 ∈ Rn and f : Rn → R, x0 is a critical point of f
iff (Df)(x0) = 0, (where by (Df)(x0) = 0 we mean that every entry of the 1 × n
matrix (Df)(x0) is 0.)

Proposition 6.2. For x0 ∈ Rn and f : Rn → R, we have that
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• f has a local minimum at x0 iff x0 is a critical point and (Hf(x0)) is
positive-definite, and
• f has a local maximum at x0 iff x0 is a critical point and (Hf(x0)) is

negative-definite.
(Recall that a function g is called positive-definite iff g(x) > 0 for all x 6= 0 and
g(0) = 0, and is called negative-definite iff g(x) < 0 for all x 6= 0 and g(0) = 0.)

The proofs of these propositions are in Marsden/Tromba, or any halfway-decent
source on vector calculus: we omit them here, in favor of a pair of examples that
illustrate their use.

Example 6.3. Classify all of the extremal points of the “monkey saddle” function
f(x, y) = x3 − 3xy2.

Proof. So: because
• ∂f

∂x = 3x2 − 3y2,
• ∂f

∂y = −6xy,

we have that the only critical point of f occurs at (0, 0); then, because

• ∂2f
∂x2 = 6x,

• ∂2f
∂y2 = −6x,

• ∂2f
∂y∂x = ∂2f

∂y∂x = −6y,

we have that (Hf(0, 0))(x, y) = 1
2 (x, y)·

(
0 0
0 0

)
·(x, y)T = 0; as a result, Hf(0, 0) is

neither positive-definite nor negative-definite, and thus the point at (0,0) is neither
a minimum nor a maximum. (It’s worth noting that this makes sense, as looking at
the graph of the monkey saddle makes it “obvious” that there are no local minima
or maxima.)

�

Example 6.4. Classify all of the extremal points of the function f(x, y) = x2 +y2.

Proof. So: because
• ∂f

∂x = 2x,
• ∂f

∂y = 2y,

we have that the only critical point of f occurs at (0, 0); then, because

• ∂2f
∂x2 = 2,

• ∂2f
∂y2 = 2,
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• ∂2f
∂y∂x = ∂2f

∂y∂x = 0,

we have that (Hf(0, 0))(x, y) = 1
2 (x, y) ·

(
2 0
0 2

)
· (x, y)T = 2x2 + 2y2; as a result,

Hf(0, 0) is positive definite, as the quantity 2x2 + 2y2 is larger than 0 whenever
both x, y 6= 0 and is equal to 0 if x, y = 0. This can also be seen by analyzing the
eigenvalues of the matrix above – because we know that

• the matrix of second partial derivatives of a C2 function f : Rn → R is
symmetric, as it doesn’t matter in which order we take the derivatives, and
• symmetric matrices are positive-definite iff all of their eigenvalues are pos-

itive,

we can simply note that the only eigenvalue of the matrix
(

2 0
0 2

)
is 2, and thus

that Hf is positive-definite. So f has a local minimum at (0, 0).
Again, this agrees with inspection, as the picture below demonstrates:

�
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