
MA1C, WEEK 2: TOTAL DERIVATIVES, TANGENT PLANES
AND THE CHAIN RULE.

TA: PADRAIC BARTLETT

These notes, like all future notes, can be found on my website.

1. Last Week’s HW

Average: was around 90%. There were no major problems to speak of; just
calculation difficulties in places.

2. Random Question

The Four-Color Theorem is a famous theorem in mathematics that is notable for
being the first major theorem whose proof required the use of a computer; it says
that any map in a plane can be colored with four colors so that no two countries
who share a border are of the same color. This kind of question, however, extends
to other shapes – for example, we can ask how many colors would be required to
color a map on a torus, i.e. a division of a torus into countries.

It turns out that you need up to 7 colors to color any map on the torus. Can
you find a map which requires you to use all seven colors?

3. Total Derivatives and Tangent Planes - Definitions

Definition 3.1. For a function f : Rn → R, recall that we defined the partial
derivative ∂(f)

∂xi
of f as

∂(f)
∂xi

(a1 . . . an) := lim
h→0

f(a1, . . . ai + h, . . . an)− f(a1 . . . an)
h

The idea here was that this gives us the rate of change of f in the xi-“direction”
at a point a.

However, when we talk about a derivative what we really want is a way to talk
about some nice linear approximation to a function – this is what we always want
to use derivatives for, as they give us an idea of where a function is “going” at a
certain point in time. So: the partial derivatives in of themselves aren’t necessarily
enough information to really talk about what the function is doing at a point, as
it’s a priori possible that the function’s derivatives might look like one kind of thing
if you approach it along the paths t 7→ xi, but does something completely crazy on
the paths that the partial derivatives aren’t telling you about! What we really want
is for the derivative to give us not a collection of n paths, but a tangent plane of
dimension n which approximates our function along any path! This motivates the
definition below of the total derivative:
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Definition 3.2. For a function f : Rn → Rm, we define the total derivative as the
m× n matrix

Df(a) =
[
∂fi

∂xj
(a)
]
,

and say that f is differentiable at a if and only if the limit

lim
x to0

||f(x)− f(a)−Df(a) · (x− a)||
||x− a||

= 0.

If this holds and m = 1, we can say that the tangent plane to f at a exists, and
define it as the plane

(3.3) xn+1 = f(a) +
(
∂f

∂x1
(a)
)
· (x1 − a1) + . . .+

(
∂f

∂xn
(a)
)
· (xn − an).

Remark 3.4. The above definition is often quite ponderous for showing that some-
thing is differentiable: it is often easier to simply show the stronger statement that
a function f is C1 – i.e. that all of its partial derivatives exist and are continuous –
because we proved in class that C1 functions are all differentiable. it bears noting,
however, that there are differentiable functions that are not C1! Can you think of
any?

4. Total Derivatives and Tangent Planes - Examples

So: to clarify the definitions above, we work several examples.

Example 4.1. Let
f(x, y) = −x2 − y2.

Decide whether f is differentiable, and find its tangent plane at 0, if it exists.

Proof. So: the partials of f are simply ∂f
∂x = −2x,∂f

∂y = −2y; so, as both of these
are continuous, we have that f is C1 and thus differentiable. Its tangent plane at
an arbitrary point a, b in space is given by the equations

z = −a2 − b2 − 2a(x− a)− 2b(y − b) = a2 + b2 − 2ax− 2by;

in specific, at (a, b) = (0, 0), this is just the tangent plane z = 0; i.e. the xy-plane.
Looking at the picture of the graph below, this is in accord with our intuition of
what the tangent plane to 0 of this function should look like.
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Example 4.2. Let

f(x, y) =
√
x2 + y2.

Decide whether f is differentiable, and find its tangent plane at 0, if it exists.

Proof. So: the partials of f are ∂f
∂x = x√

x2+y2
,∂f
∂y = x√

x2+y2
. However, neither of

these functions are even defined at 0, nor can they be, as

∂f

∂x
(ε, 0) =

ε

|ε|
= ±1,

depending on whether ε is greater than 0 or less than 0, and thus the limit

∂(f)
∂xi

(0, 0) := lim
h→0

f(ε, 0)− f(0, 0))
h

doesn’t exist. So the total derivative cannot be said to exist at (0,0), as the partials
do not even exist there. This, again, agrees with our intution: because this shape
is simply a cone, and as such there is intuitively no way to approximate the “point”
of the cone with a plane of some sort.

�

Example 4.3. Let

f(x, y) = x3 − 3xy2

Decide whether f is differentiable, and find its tangent plane at 0, if it exists.

Proof. So: the partials of f are ∂f
∂x = 3x2 − 3y2,∂f

∂y = −6xy; so, as both of these
are continuous, we have that f is C1 and thus differentiable. Its tangent plane at
an arbitrary point a, b in space is given by the equations

z = a3 − 3ab2 + (3a2 − 3b2)(x− a)− 6ab(y − b)

and thus specifically at (a, b) = (0, 0), this is just the tangent plane z = 0; again,
the xy-plane. Looking at the picture of the graph below, this yet again makes sense.
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This surface is called a “monkey saddle” (because it looks like a normal ”saddle
point,” but with a third depression; the idea being that a monkey would need a
saddle with three depressions to ride properly, as it would need a place for its tail
as well as its legs.) �

It’s also worth defining a concept similar to that of the tangent plane here, that
of a tangent vector: i.e. for a function f : R→ Rn (i.e. a path in Rn), we define
the tangent vector at any point x ∈ R to be the vector (∂f1

∂t (x) . . . ∂fn

∂t (x)). This
can be thought of as the velocity vector of the path at any given point x: this exists
whenever the partials all exist and aren’t all identically 0.

Example 4.4. Let
f(t) = (t2, t3).

Find f ’s tangent vectors, wherever they exist.

Proof. So: the partials of f are ∂f1
∂t = 2t,∂f2

∂t = 3t2; so they’re defined everywhere
and give us that f has a well-defined tangent vector everywhere except for at
t = 0; this is because at t = 0 both of the partials above vanish, and we have no
well-defined “vector.” This, again, makes sense when compared with its graph, as

visually has no well-defined tangent vector at 0. �

5. The Chain Rule - Definition

So: first, recall the single-variable formulation of the chain rule:

Theorem 5.1. For f, g : R → R, g differentiable at x0, f differentiable at g(x0),
we have that

(f ◦ g)′(x0) = f ′(g(x0)) · g′(x0).
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The multivariable definition is almost precisely the same:

Theorem 5.2. For f : Rm → Rp, g : Rn → Rm, g differentiable at x0, f differen-
tiable at g(x0), we have that

D(f ◦ g)(x0) = (Df)(g(x0)) · (Dg)(x0).

The only thing to stress here is that this definition of the chain rule is about the
total derivative – trying to apply the chain rule to the partials of a function will
frequently cause horrible things to happen to you.

6. The Chain Rule - Examples

Example 6.1. Check that the chain rule works when applied to g(x, y) = x2 +
y2, f(x) =

√
(x).

Proof. So, we calculate:

D(f ◦ g)(x0, y0) = D(
√
x2 + y2)(x0, y0) =

(
x0√
x2

0 + y2
0

,
y0√
x2

0 + y2
0

)
from our calculations earlier in the HW. As well,

(Df)(g(x0, y0)·(Dg)(x0, y0) =
1

2
√
g(x0, y0)

·(2x0, 2y0) =

(
x0√
x2

0 + y2
0

,
y0√
x2

0 + y2
0

)
.

So these two quantities are equal; thus, the chain rule worked here. �

Example 6.2. Check that the chain rule works when applied to g(t) = (t2, t3, t), f(x, y, z) =
x+ y + z.

Proof. So, we calculate:

D(f ◦ g)(t0) = D(t+ t2 + t3)(t0) = 1 + 2t0 + 3t20,

(Df)(g(t0) · (Dg)(t0) = (1, 1, 1) · (2t0, 3t20, 1)T = 1 + 2t0 + 3t20.
So these two quantities are equal; thus, the chain rule again worked here. �
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