MA1C, WEEK 2: TOTAL DERIVATIVES, TANGENT PLANES
AND THE CHAIN RULE.

TA: PADRAIC BARTLETT

These notes, like all future notes, can be found on my website.

1. Last WEEK’S HW

Average: was around 90%. There were no major problems to speak of; just
calculation difficulties in places.

2. RANDOM QUESTION

The Four-Color Theorem is a famous theorem in mathematics that is notable for
being the first major theorem whose proof required the use of a computer; it says
that any map in a plane can be colored with four colors so that no two countries
who share a border are of the same color. This kind of question, however, extends
to other shapes — for example, we can ask how many colors would be required to
color a map on a torus, i.e. a division of a torus into countries.

It turns out that you need up to 7 colors to color any map on the torus. Can
you find a map which requires you to use all seven colors?

3. TOoTAL DERIVATIVES AND TANGENT PLANES - DEFINITIONS

Definition 3.1. For a function f : R® — R, recall that we defined the partial

derivative 86%) of f as

0 soova;+h,.oay) — .. an,
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The idea here was that this gives us the rate of change of f in the x;- “direction”
at a point a.

However, when we talk about a derivative what we really want is a way to talk
about some nice linear approximation to a function — this is what we always want
to use derivatives for, as they give us an idea of where a function is “going” at a
certain point in time. So: the partial derivatives in of themselves aren’t necessarily
enough information to really talk about what the function is doing at a point, as
it’s a priori possible that the function’s derivatives might look like one kind of thing
if you approach it along the paths ¢ — z;, but does something completely crazy on
the paths that the partial derivatives aren’t telling you about! What we really want
is for the derivative to give us not a collection of n paths, but a tangent plane of
dimension n which approximates our function along any path! This motivates the
definition below of the total derivative:


http://www.its.caltech.edu/~padraic/
http://en.wikipedia.org/wiki/Four_color_theorem
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Definition 3.2. For a function f : R®™ — R™, we define the total derivative as the
m X n matrix

pr@ = |5 ).

and say that f is differentiable at a if and only if the limit
/@)~ J@) = Df(@) - (2 — )] _

[Tz~

0.

If this holds and m = 1, we can say that the tangent plane to f at a exists, and
define it as the plane

(33) w1 = fla) + (%(a)) @ —a) 4.t (%(@) (@ — an).

Remark 3.4. The above definition is often quite ponderous for showing that some-
thing is differentiable: it is often easier to simply show the stronger statement that
a function f is C! —i.e. that all of its partial derivatives exist and are continuous —
because we proved in class that C! functions are all differentiable. it bears noting,

however, that there are differentiable functions that are not C*! Can you think of
any?

4. TOTAL DERIVATIVES AND TANGENT PLANES - EXAMPLES
So: to clarify the definitions above, we work several examples.

Example 4.1. Let

fla,y) = —a® — o2
Decide whether f is differentiable, and find its tangent plane at 0, if it exists.
Proof. So: the partials of f are simply %ﬁ = —237,%5 = —2y; so, as both of these
are continuous, we have that f is C! and thus differentiable. Its tangent plane at
an arbitrary point a,b in space is given by the equations

z=—a®—b* —2a(x — a) — 2b(y — b) = a* + b* — 2ax — 2by;

in specific, at (a,b) = (0,0), this is just the tangent plane z = 0; i.e. the zy-plane.
Looking at the picture of the graph below, this is in accord with our intuition of
what the tangent plane to 0 of this function should look like.
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Example 4.2. Let
fl@y) = Va2 + 92

Decide whether f is differentiable, and find its tangent plane at 0, if it exists.

of _ z of _ x
oz \/m2+y2 ' dy \/z2+y2 :
these functions are even defined at 0, nor can they be, as

Proof. So: the partials of f are However, neither of

depending on whether € is greater than 0 or less than 0, and thus the limit

811?1‘ h—0 h
doesn’t exist. So the total derivative cannot be said to exist at (0,0), as the partials
do not even exist there. This, again, agrees with our intution: because this shape
is simply a cone, and as such there is intuitively no way to approximate the “point”
of the cone with a plane of some sort.

Example 4.3. Let

fla,y) = & — 3y

Decide whether f is differentiable, and find its tangent plane at 0, if it exists.

Proof. So: the partials of f are g—£ = 322 — 3y2,g—£ = —6xy; so, as both of these
are continuous, we have that f is C! and thus differentiable. Its tangent plane at

an arbitrary point a, b in space is given by the equations
z = a® — 3ab® + (3a® — 3b*)(x — a) — 6ab(y — b)

and thus specifically at (a,b) = (0,0), this is just the tangent plane z = 0; again,
the xy-plane. Looking at the picture of the graph below, this yet again makes sense.
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This surface is called a “monkey saddle” (because it looks like a normal ”saddle
point,” but with a third depression; the idea being that a monkey would need a
saddle with three depressions to ride properly, as it would need a place for its tail
as well as its legs.) O

It’s also worth defining a concept similar to that of the tangent plane here, that
of a tangent vector: i.e. for a function f: R — R™ (i.e. a path in R™), we define
the tangent vector at any point z € R to be the vector (%(m) . %(w)) This
can be thought of as the velocity vector of the path at any given point z: this exists

whenever the partials all exist and aren’t all identically 0.

Example 4.4. Let
f(&) = (,1%).
Find f’s tangent vectors, wherever they exist.

Proof. So: the partials of f are % = 2t,% = 3t2; so they're defined everywhere

and give us that f has a well-defined tangent vector everywhere except for at
t = 0; this is because at ¢ = 0 both of the partials above vanish, and we have no
well-defined “vector.” This, again, makes sense when compared with its graph, as

visually has no well-defined tangent vector at 0. (]

5. THE CHAIN RULE - DEFINITION
So: first, recall the single-variable formulation of the chain rule:

Theorem 5.1. For f,g: R — R, g differentiable at xq, [ differentiable at g(xo),
we have that

(fog)(z0) = f'(g(x0)) - g (w0).
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The multivariable definition is almost precisely the same:

Theorem 5.2. For f : R™ — RP, g : R™ — R™, g differentiable at xq, f differen-
tiable at g(xo), we have that

D(f o g)(xo) = (Df)(g(x0)) - (Dg)(wo)-

The only thing to stress here is that this definition of the chain rule is about the
total derivative — trying to apply the chain rule to the partials of a function will
frequently cause horrible things to happen to you.

6. THE CHAIN RULE - EXAMPLES
Example 6.1. Check that the chain rule works when applied to g(z,y) = 2 +
v, f(a) = /().
Proof. So, we calculate:

D(fogxxo,yo)mm)(wo)( 7o n )

Vgt Vg v

from our calculations earlier in the HW. As well,

1 zo Yo
(Df)(9(x0,y0)-(Dg)(wo, yo) = ——="(270,2y0) = ; :
2v/9(z0, 40) Vag+ v Vg +
So these two quantities are equal; thus, the chain rule worked here. O

Example 6.2. Check that the chain rule works when applied to g(t) = (t2,t3,t), f(z,y,2) =
r+y+ =z

Proof. So, we calculate:
D(f o g)(to) = D(t +t* +t3)(to) = 1 + 2t + 3t2,

(Df)(g(to) - (Dg)(to) = (1,1,1) - (2to, 3¢5, 1)" =1+ 2to + 3¢5
So these two quantities are equal; thus, the chain rule again worked here. O
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