MA1C, WEEK 2: TOTAL DERIVATIVES, TANGENT PLANES AND THE CHAIN RULE.

TA: PADRAIC BARTLETT

These notes, like all future notes, can be found on my website.

1. Last Week's HW

Average: was around 90%. There were no major problems to speak of; just calculation difficulties in places.

2. Random Question

The Four-Color Theorem is a famous theorem in mathematics that is notable for being the first major theorem whose proof required the use of a computer; it says that any map in a plane can be colored with four colors so that no two countries who share a border are of the same color. This kind of question, however, extends to other shapes - for example, we can ask how many colors would be required to color a map on a torus, i.e. a division of a torus into countries.

It turns out that you need up to 7 colors to color any map on the torus. Can you find a map which requires you to use all seven colors?

3. Total Derivatives and Tangent Planes - Definitions

Definition 3.1. For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, recall that we defined the partial derivative $\frac{\partial(f)}{\partial x_{i}}$ of f as

$$
\frac{\partial(f)}{\partial x_{i}}\left(a_{1} \ldots a_{n}\right):=\lim _{h \rightarrow 0} \frac{f\left(a_{1}, \ldots a_{i}+h, \ldots a_{n}\right)-f\left(a_{1} \ldots a_{n}\right)}{h}
$$

The idea here was that this gives us the rate of change of f in the x_{i} " "direction" at a point a.

However, when we talk about a derivative what we really want is a way to talk about some nice linear approximation to a function - this is what we always want to use derivatives for, as they give us an idea of where a function is "going" at a certain point in time. So: the partial derivatives in of themselves aren't necessarily enough information to really talk about what the function is doing at a point, as it's a priori possible that the function's derivatives might look like one kind of thing if you approach it along the paths $t \mapsto x_{i}$, but does something completely crazy on the paths that the partial derivatives aren't telling you about! What we really want is for the derivative to give us not a collection of n paths, but a tangent plane of dimension n which approximates our function along any path! This motivates the definition below of the total derivative:

Definition 3.2. For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, we define the total derivative as the $m \times n$ matrix

$$
D f(a)=\left[\frac{\partial f_{i}}{\partial x_{j}}(a)\right]
$$

and say that f is differentiable at a if and only if the limit

$$
\lim _{x \text { to0 }} \frac{\|f(x)-f(a)-D f(a) \cdot(x-a)\|}{\|x-a\|}=0
$$

If this holds and $m=1$, we can say that the tangent plane to f at a exists, and define it as the plane

$$
\begin{equation*}
x_{n+1}=f(a)+\left(\frac{\partial f}{\partial x_{1}}(a)\right) \cdot\left(x_{1}-a_{1}\right)+\ldots+\left(\frac{\partial f}{\partial x_{n}}(a)\right) \cdot\left(x_{n}-a_{n}\right) . \tag{3.3}
\end{equation*}
$$

Remark 3.4. The above definition is often quite ponderous for showing that something is differentiable: it is often easier to simply show the stronger statement that a function f is C^{1} - i.e. that all of its partial derivatives exist and are continuous because we proved in class that C^{1} functions are all differentiable. it bears noting, however, that there are differentiable functions that are not C^{1} ! Can you think of any?

4. Total Derivatives and Tangent Planes - Examples

So: to clarify the definitions above, we work several examples.
Example 4.1. Let

$$
f(x, y)=-x^{2}-y^{2}
$$

Decide whether f is differentiable, and find its tangent plane at 0 , if it exists.
Proof. So: the partials of f are simply $\frac{\partial f}{\partial x}=-2 x, \frac{\partial f}{\partial y}=-2 y$; so, as both of these are continuous, we have that f is C^{1} and thus differentiable. Its tangent plane at an arbitrary point a, b in space is given by the equations

$$
z=-a^{2}-b^{2}-2 a(x-a)-2 b(y-b)=a^{2}+b^{2}-2 a x-2 b y ;
$$

in specific, at $(a, b)=(0,0)$, this is just the tangent plane $z=0$; i.e. the $x y$-plane. Looking at the picture of the graph below, this is in accord with our intuition of what the tangent plane to 0 of this function should look like.

Example 4.2. Let

$$
f(x, y)=\sqrt{x^{2}+y^{2}}
$$

Decide whether f is differentiable, and find its tangent plane at 0 , if it exists.
Proof. So: the partials of f are $\frac{\partial f}{\partial x}=\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{\partial f}{\partial y}=\frac{x}{\sqrt{x^{2}+y^{2}}}$. However, neither of these functions are even defined at 0 , nor can they be, as

$$
\frac{\partial f}{\partial x}(\epsilon, 0)=\frac{\epsilon}{|\epsilon|}= \pm 1
$$

depending on whether ϵ is greater than 0 or less than 0 , and thus the limit

$$
\frac{\partial(f)}{\partial x_{i}}(0,0):=\lim _{h \rightarrow 0} \frac{f(\epsilon, 0)-f(0,0))}{h}
$$

doesn't exist. So the total derivative cannot be said to exist at (0,0), as the partials do not even exist there. This, again, agrees with our intution: because this shape is simply a cone, and as such there is intuitively no way to approximate the "point" of the cone with a plane of some sort.

Example 4.3. Let

$$
f(x, y)=x^{3}-3 x y^{2}
$$

Decide whether f is differentiable, and find its tangent plane at 0 , if it exists.
Proof. So: the partials of f are $\frac{\partial f}{\partial x}=3 x^{2}-3 y^{2}, \frac{\partial f}{\partial y}=-6 x y$; so, as both of these are continuous, we have that f is C^{1} and thus differentiable. Its tangent plane at an arbitrary point a, b in space is given by the equations

$$
z=a^{3}-3 a b^{2}+\left(3 a^{2}-3 b^{2}\right)(x-a)-6 a b(y-b)
$$

and thus specifically at $(a, b)=(0,0)$, this is just the tangent plane $z=0$; again, the $x y$-plane. Looking at the picture of the graph below, this yet again makes sense.

This surface is called a "monkey saddle" (because it looks like a normal "saddle point," but with a third depression; the idea being that a monkey would need a saddle with three depressions to ride properly, as it would need a place for its tail as well as its legs.)

It's also worth defining a concept similar to that of the tangent plane here, that of a tangent vector: i.e. for a function $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$ (i.e. a path in \mathbb{R}^{n}), we define the tangent vector at any point $x \in \mathbb{R}$ to be the vector $\left(\frac{\partial f_{1}}{\partial t}(x) \ldots \frac{\partial f_{n}}{\partial t}(x)\right)$. This can be thought of as the velocity vector of the path at any given point x : this exists whenever the partials all exist and aren't all identically 0 .

Example 4.4. Let

$$
f(t)=\left(t^{2}, t^{3}\right)
$$

Find f 's tangent vectors, wherever they exist.
Proof. So: the partials of f are $\frac{\partial f_{1}}{\partial t}=2 t, \frac{\partial f_{2}}{\partial t}=3 t^{2}$; so they're defined everywhere and give us that f has a well-defined tangent vector everywhere except for at $t=0$; this is because at $t=0$ both of the partials above vanish, and we have no well-defined "vector." This, again, makes sense when compared with its graph, as

visually has no well-defined tangent vector at 0 .

5. The Chain Rule - Definition

So: first, recall the single-variable formulation of the chain rule:
Theorem 5.1. For $f, g: \mathbb{R} \rightarrow \mathbb{R}, g$ differentiable at x_{0}, f differentiable at $g\left(x_{0}\right)$, we have that

$$
(f \circ g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(g\left(x_{0}\right)\right) \cdot g^{\prime}\left(x_{0}\right) .
$$

The multivariable definition is almost precisely the same:
Theorem 5.2. For $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, g$ differentiable at x_{0}, f differentiable at $g\left(x_{0}\right)$, we have that

$$
D(f \circ g)\left(x_{0}\right)=(D f)\left(g\left(x_{0}\right)\right) \cdot(D g)\left(x_{0}\right)
$$

The only thing to stress here is that this definition of the chain rule is about the total derivative - trying to apply the chain rule to the partials of a function will frequently cause horrible things to happen to you.

6. The Chain Rule - Examples

Example 6.1. Check that the chain rule works when applied to $g(x, y)=x^{2}+$ $\left.y^{2}, f(x)=\sqrt{(} x\right)$.

Proof. So, we calculate:

$$
D(f \circ g)\left(x_{0}, y_{0}\right)=D\left(\sqrt{x^{2}+y^{2}}\right)\left(x_{0}, y_{0}\right)=\left(\frac{x_{0}}{\sqrt{x_{0}^{2}+y_{0}^{2}}}, \frac{y_{0}}{\sqrt{x_{0}^{2}+y_{0}^{2}}}\right)
$$

from our calculations earlier in the HW. As well,

$$
(D f)\left(g\left(x_{0}, y_{0}\right) \cdot(D g)\left(x_{0}, y_{0}\right)=\frac{1}{2 \sqrt{g\left(x_{0}, y_{0}\right)}} \cdot\left(2 x_{0}, 2 y_{0}\right)=\left(\frac{x_{0}}{\sqrt{x_{0}^{2}+y_{0}^{2}}}, \frac{y_{0}}{\sqrt{x_{0}^{2}+y_{0}^{2}}}\right)\right.
$$

So these two quantities are equal; thus, the chain rule worked here.
Example 6.2. Check that the chain rule works when applied to $g(t)=\left(t^{2}, t^{3}, t\right), f(x, y, z)=$ $x+y+z$.

Proof. So, we calculate:

$$
\begin{gathered}
D(f \circ g)\left(t_{0}\right)=D\left(t+t^{2}+t^{3}\right)\left(t_{0}\right)=1+2 t_{0}+3 t_{0}^{2} \\
(D f)\left(g\left(t_{0}\right) \cdot(D g)\left(t_{0}\right)=(1,1,1) \cdot\left(2 t_{0}, 3 t_{0}^{2}, 1\right)^{T}=1+2 t_{0}+3 t_{0}^{2}\right.
\end{gathered}
$$

So these two quantities are equal; thus, the chain rule again worked here.

