
MA1C, WEEK 1: LEVEL CURVES AND LIMITS

TA: PADRAIC BARTLETT

1. Administrivia and Announcements

So, before we begin, here’s a series of random administrative things:
• These notes, like all future notes, can be found on my website.
• The easiest way to contact me if you have questions on the HW is via email!

My address is padraic@caltech.edu.
• I have an office hour! From 8-9pm, on Sunday, in 155 Sloan (though if quite

a few people show up, we’ll just occupy a random nearby room.)
• The late HW policy has changed from last quarter. I.e. you are no

longer allowed to turn in late HW. In the event that you become
sick/calamities befall you/other such things, we need you to contact us by
10pm the night before the HW is due; furthermore, please only attempt
this under fairly dire circumstances, as we have very little leeway to be
merciful. If this is confusing, look at the course webpage, or contact any
of us for further clarification! (as evidenced by the fact that I’ve messed
the details of this policy up twice by attempting to go from memory, this
is possible.)
• Draw all of your pictures for this HW by hand.

2. Random Questions

So: notice that if you glue together the sides of a square as depicted below, you
get a doughnut (i.e. a torus).

Question 2.1. Can you come up with a way to glue together a hexagon to get a
torus? How about a way to glue together a octagon to get a 2-hole torus (i.e. a
torus with two holes?) What other shapes can you make?

3. Level Curves

So, the idea behind level curves is pretty simple: given a function f(x, y), we can
come up with a 3-dimensional graph for f by drawing the curves C(a) = {(x, y) :
f(x, y) = a}, and putting those curves on the plane z = a in the xyz-plane. If
you’ve ever seen an elevation map or topographical map for a mountain range,
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this is exactly what we’re doing, (except our functions here are not necessarily
representing mountain ranges. but you get the idea.)

We work one explicit example here to give the idea of how these things go:

Example 3.1. Draw the level curves of the function

f(x, y) =
√

16− x2 − y2

at the values 0,
√

5,
√

12,
√

15, 4. What shape is this?

So: for f(x, y) = 0, this is going to just be the graph of the curve

0 =
√

16− x2 − y2;

i.e.
16 = x2 + y2,

the circle of radius 4. Similarly, the level curves corresponding to
√

5,
√

12,
√

15, 4
will correspond to circles of radius 3, 2, and 0; graphing then gives us that the
shape in question is

4. Limits - Definitions

So: back in first quarter, we had two equivalent definitions for what it meant
for a single-variable function f : R→ R to have a limit L at a point a. We review
both of them below, briefly.

Definition 4.1. (epsilon-delta definition:) We say that

lim
x→a

f(x) = L

if and only if

(∀ε > 0), (∃δ > 0) s.t. (∀x s.t. |x− a| < δ), (|f(x)− L| < ε).

One way to understand this definition (kinda) is to imagine a two-player game,
with play that goes through three rounds as follows:

• Player 1 names some constant, ε.
• Player 2, having heard player 1’s constant, then responds with a second

number δ.
• Player 1 then responds with any point x that’s within distance δ of a.
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We say that Player 2 wins if f(x) is within distanceε from L, and Player 1 wins
otherwise.

In this framework of a “game,” we can then say that limx→a f(x) = L holds
if and only if Player 2 above has a strategy to win every time. (This concept of
playing games as a proof strategy is something that comes up in mathematics, and
has produced some remarkably intuitive proofs of complicated theorems.)

We also had a different (yet equivalent!) definition using the language of neigh-
borhoods, which we describe below:

Definition 4.2. (neighborhood definition) We say that

lim
x→a

f(x) = L

if and only if for every neighborhood U of L (remember: a neighborhood of a point
is just an open set containing that point), there is a neighborhood V of a such that

f(V \ {a}) ⊂ U,

(where V \ {a} denotes the set of all points in V that are not a.)

So: these were the one-dimensional definitions of limits. It turns out that the
higher-dimensional definitions of limits are pretty much the same; i.e if we just
replace all of the instances of one-dimensional variables with n-dimensional variables
in the definitions above, we get the definitions of limits in the higher-dimensional
sense! The reasoning for why this would be true is that limits are merely a way
of formally talking about whether a function is “getting close” to something; and
this is not a concept we would expect to be much different in the multidimensional
sense.

We repeat the higher-dimensional definitions below, for your convenience. Here,
we assume that f is a function from Rn to Rm, and consequently that ā, x̄ are
elements in Rn and L̄ is an element in Rm.

Definition 4.3. (epsilon-delta definition:) We say that

lim
x̄→ā

f(x̄) = L̄

if and only if

(∀ε > 0), (∃δ > 0) s.t. (∀x̄ s.t. ||x̄− ā|| < δ), (||f(x̄)− L̄|| < ε).

Definition 4.4. Alternately, we say that

lim
x̄→ā

f(x̄) = L̄

if and only if for every neighborhood U of L̄, there is a neighborhood V of ā such
that

f(V \ {ā}) ⊂ U,
(where V \ {ā} denotes the set of all points in V that are not ā.)

5. Limits - Worked Examples

So: this is well and good. But how do we use these definitions? We work several
examples below:
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Example 5.1. Does the function

f(x, y) =
y2

x2 + y2

have a limit at the point (0, 0)?

Proof. So, the answer to this question is no! To see why: consider the two lines
x = 0 and y = 0 through the origin. Along the first line x = 0, this function f(0, y)
is identically equal to y2

y2 = 1, so its limit as we approach 0 is 1; along the second
line (y = 0), this function f(x, 0) is identically 0 and so its limit as we approach 0
is 0.

So: we will do a proof by contradiction. Suppose this function f had a limit
L. Then, we know that for any epsilon – say, 1/3 – there must be some δ such
that whenever ||(x, y)|| < δ, |f(x, y)− L| < ε. But we know that f(0, δ/2) = 1 and
f(δ/2, 0) = 0; so |1 − L| < 1/3 and |L| < 1/3. This is clearly impossible by the
triangle inequality! So no limit exists.

Note that there was nothing special here about 1 and 0, except that they were
not equal to each other. In general, to show that a limit of a does not exist, it
suffices to find two distinct paths along which the function approaches different
values, because we can always do an ε− δ argument like the one above when that
happens. �

Example 5.2.

f(x, y) =
(2x− y)32

(2x)32 + y32

have a limit at the point (0, 0)?

Proof. So, this question is a touch more subtle. Along both of the paths x = 0 and
y = 0, this function is identically 1, so we can’t just use the paths we did before:
however, if we examine the path 2x = y, we have that f(x, 2x) = 0 for all nonzero
x, so the function f goes to 0 along this path.

So, by the same argument as before, this function doesn’t have a limit at 0. �

Example 5.3. Does

f(x, y) =
cos2(x2y)− 1

y4x2

have a limit at the point (0, 0)?

Proof. So: first, we simplify the function into the form

f(x, y) =
cos2(x2y)− 1

y2x
=

sin2(x2y)
y4x2

=
(

sin(x2y)
y2x

)2

.

From here, we again consider two paths: the first of which is the line y = x. Along

this path, we have that this function f(x, x) =
(

sin(x3)
x3

)2

goes to 1, as

• x3 goes to 0 as x→ 0,
• sin(x)/x goes to 1 as x→ 0,
• x2 goes to 1 as x→ 1, and
• we can simply compose the limits of these functions.
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However, along the path x2 = y, we have that

f(x2, x) =
(

sin(x4)
x5

)2

=
1
x2
·
(

sin(x4)
x4

)2

;

As x goes to 0, we know by our earlier arguments that the
(

sin(x4)
x4

)2

-part of the

equation above goes to 1. However, the 1
x2 part clearly goes to infinity as x → 0;

so f goes to infinity along this path. Since infinity and 1 are very different values,
we can again conclude that no limit exists. �

However, occasionally, limits do exist! Here’s an example of one:

Example 5.4. We claim that

lim
(x,y,z)→0

cos(xyz) = 1.

Proof. To see why: notice that

|xyz| ≤ max(x3, y3, z3) ≤ ||(x, y, z)||3

by the triangle inequality, and thus that |xyz| → 0 as (x, y, z)→ 0. Because cosine
is continuous, we can compose limits to get that

lim
(x,y,z)→0

cos(xyz) = 1,

as desired. �

In general, you can do things like epsilon-delta proofs to show that limits exist;
but often more elegant proofs can be devised by simply using continuity and results
from the one-dimensional cases we already know.
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