
FINAL REVIEW! - SELECTED EXERCISES

TA: PADRAIC BARTLETT

1. Exam Properties

So: the final will cover chapters 5-8 with the exceptions of sections 6.4,7.7,8.5,8.6
– i.e. the material covered in the fifth through eighth homeworks. Basically, what
you need to know is

• Chapter 5 – how to do basic integration; Fubini’s theorem.
• Chapter 6 – Change of Variables formula – the general form for 2 and 3

dimensions, as well as the explicit transformations for polar, cylindrical and
spherical coördinates; also, how to use integrals to calculate average values
and centers of mass.
• Chapter 7 – different ways of taking integrals; i.e. how to integrate functions

and vector fields over curves and surfaces.
• Chapter 8 – Green’s theorem, the divergence theorem, Stokes’s theorem,

and Gauss’s theorem.
Explicit lists of definitions/theorems and their properties can be found in the earlier
notes here.

So: we work a series of examples below, to illustrate the theory we’ve learned so
far.

2. Area of a Fish

Question 2.1. Find the area bounded by the “fish curve” parametrized by

c(t) = (cos(t)− sin2(t)√
2

, cos(t) sin(t)).

Proof. So: recall the formula for area that’s given by Green’s theorem: i.e. for D a
region bounded by the simple closed curve c+ oriented positively (i.e. so that the
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region D is on the LHS of the curve), we have

A(S) =
1
2

∫
c+
xdy − ydx.

So, we can’t apply this directly to c, as this curve is not a simple closed curve!
Indeed, c(π/2) = c(3π/2). However, what we can do is use this formula to find the
area of the “head” and the “tail,” and simply sum these two areas together.

So: the head is parametrized positively by the curve c on the interval [−π/2, π/2],
and the tail is parametrized negatively by the curve c on the interval [π/2, 3π/2];
you can see this by drawing the curve c from 0 to 2π and drawing little arrows to
show you which direction you’re going.

As a result, we have that the area of the head is just

1
2

∫ π/2

−π/2
(c1(t)c′2(t)− c2(t)c′1(t))dt

and of the tail is

−1
2

∫ 3π/2

π/2

(c1(t)c′2(t)− c2(t)c′1(t))dt.

(where the minus sign comes from the reversed orientation of the tail.)
So: we calculate!

1
2

∫ b

a

(c1(t)c′2(t)− c2(t)c′1(t))dt

=
1
2

∫ b

a

(
cos(t)− sin2(t)√

2

)
(cos2(t)− sin2(t))− (cos(t) sin(t))

(
− sin(t)− 2 sin(t) cos(t)√

2

)
dt

=
1
2

∫ b

a

cos3(t) +
sin4(t)√

2
− sin2 cos2(t)(t)√

2
+

2 sin2(t) cos2(t)√
2

dt

=
1
2

∫ b

a

cos3(t) +
sin2(t)√

2
dt

=
1
2

∫ b

a

3 cos(t)− cos(3t)
4

+
1− cos(2t)

2
√

2
dt

=
1
8

(
3 sin(t) +

sin(3t)
3

+ t
√

2− sin(2t)√
2

) ∣∣∣b
a
.

Evaluating this at a = −π/2, b = π/2 gives that the area of the head is 2/3+π
√

2/8;
evaluating at a = π/2, b = 3π/2 yields that the area of the tail is −2/3 + π

√
2/8;

combining yields that the entire area is π
√

2/4. �

3. Vector fields over a Lissajous curve

Question 3.1. For F the vector field defined by

F (x, y, z) = (x2, y2, z2)

and c(t) the Lissajous curve parametrized by

c(t) = (sin(3t+ π/4), sin(t)),

find
∫
c
Fds.
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Proof. So, if we merely directly calculate, we have that

∫
C

Fds =
∫ 2π

0

(sin2(3t+ π/4), sin2(t), 0) · (3 cos(3t+ π/4), cos(t), 0)

=
∫ 2π

0

3 cos(3t+ π/4) sin2(3t+ π/4) + cos(t) sin2(t)dt

=
∫ 2π

0

3 cos(3t+ π/4) sin2(3t+ π/4)dt+
∫ 2π

0

cos(t) sin2(t)dt

=
∫ 1/

√
2

1/
√

2

u2du+
∫ 0

0

v2dv = 0,

where the substitutions in the last step were u = sin( 3t+ π/4) and v = sin(t).
Conversely, you could just notive that F is given by the gradient of the function

f(x, y, z) = x3+y3+z3

3 , and thus that

∫
c′
Fds =

∫ ∫
∇× (∇f)ds =

∫ ∫
0 = 0

for any simple closed curve c′ (as the curl of a gradient is always 0). Breaking up
our Lissajous curve into three simple closed curves then gives that the integral of
F over c is 0, as expected. �

4. Integral tricks - I

Question 4.1. Calculate ∫ ∫
S

x2 + y2z − z3/3dxdydz,

where S is the unit sphere.
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Proof. So, we can directly calculate this with the spherical coördinate transforma-
tion (θ, φ) 7→ (sin(φ) cos(θ), sin(φ) sin(θ), cos(φ))

∫ ∫
S

x2 + y2z − z3/3dxdydz =

=
∫ 2π

0

∫ π

0

cos2(θ) sin3(φ) cos2(θ) + sin2(θ) sin3(φ) cos(φ)− cos3(φ) sin(φ)
2

dφdθ

=
∫ 2π

0

(∫ π

0

cos2(θ)
(

3 sin(t)− sin(3t)
4

)
dφ+

∫ π

0

sin2(θ) sin3(φ) cos(φ)dφ−
∫ π

0

cos3(φ) sin(φ)
2

dφ

)
dθ

=
∫ 2π

0

cos2(θ) · 4
3

+ 0 + 0

=
4
3
π.

Alternately, you can notice that

∫ ∫
S

x2 + y2z − z3/3dxdydz =
∫ ∫

S

(x, yz,−z
2

2
) · (x, y, z)dxdydz;

because the unit normal vector on the sphere is n(x, y, z) = (x, y, z), we know that
this is actually

∫ ∫
S

(x, yz,−z
2

2
) · ndxdydz

and thus that we can apply Gauss’s theorem to get

∫ ∫
S

(x, yz,−z
2

2
) · ndxdydz =

∫ ∫ ∫
B

1 + z − zdxdydz =
∫ ∫ ∫

B

ds =
4
3
π,

the volume of the unit ball. �

5. Integral tricks – II

Question 5.1. Calculate ∫ ∫
S

(2z, 0, 2y) · dS

where S is the unit sphere.
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Proof. So, we can, again, directly calculate this with the spherical coördinate trans-
formation (θ, φ) 7→ (sin(φ) cos(θ), sin(φ) sin(θ), cos(φ))∫ ∫

S

(2z, 0, 2y)dxdydz =

=
∫ 2π

0

∫ π

0

(2 cos(φ), 0, 2 sin(φ) sin(θ)) · (− sin2(φ) cos(θ), sin2(φ) cos(θ),− sin(φ) cos(θ))dφdθ

=
∫ 2π

0

(∫ π

0

−2 cos(θ) · cos(φ) sin2(φ)dφ−
∫ π

0

2 sin2(φ) sin(θ) cos(θ)dφ
)
dθ

=
∫ 2π

0

(∫ 0

0

−2 cos(θ) · u2du−
∫ π

0

sin2(φ) sin(2θ)dφ
)
dθ

=−
∫ 2π

0

∫ π

0

sin2(φ) sin(2θ)dφdθ

=−
∫ π

0

∫ 2π

0

sin2(φ) sin(2θ)dθdφ

=0,

by using various trig identities, the substitution u = sin(φ), and the fact that sin(2θ)
has integral 0 over [0, 2π]. Alternately, you can notice that∫ ∫

S

(2z, 0, 2y)dxdydz =
∫ ∫

S

∇× (y2, z2, 0)dxdydz;

applying Gauss’s theorem then yields∫ ∫
S

∇× (y2, z2, 0)dxdydz =
∫ ∫ ∫

B

div(∇× (y2, z2, 0))dxdydz = 0

because the divergence of a curl is always 0.
Finally, you could instead just use use Stokes’s theorem, which says also that∫ ∫

S

∇× (y2, z2, 0)dxdydz =
∫
∂S

(y2, z2, 0)dxdydz = 0

because the unit sphere has no boundary. �


	1. Exam Properties
	2. Area of a Fish
	3. Vector fields over a Lissajous curve
	4. Integral tricks - I
	5. Integral tricks – II

