FINAL REVIEW! - SELECTED EXERCISES

TA: PADRAIC BARTLETT

1. Exam Properties

So: the final will cover chapters $5-8$ with the exceptions of sections $6.4,7.7,8.5,8.6$ - i.e. the material covered in the fifth through eighth homeworks. Basically, what you need to know is

- Chapter 5 - how to do basic integration; Fubini's theorem.
- Chapter 6 - Change of Variables formula - the general form for 2 and 3 dimensions, as well as the explicit transformations for polar, cylindrical and spherical coördinates; also, how to use integrals to calculate average values and centers of mass.
- Chapter 7 - different ways of taking integrals; i.e. how to integrate functions and vector fields over curves and surfaces.
- Chapter 8 - Green's theorem, the divergence theorem, Stokes's theorem, and Gauss's theorem.
Explicit lists of definitions/theorems and their properties can be found in the earlier notes here.

So: we work a series of examples below, to illustrate the theory we've learned so far.

2. Area of a Fish

Question 2.1. Find the area bounded by the "fish curve" parametrized by

$$
c(t)=\left(\cos (t)-\frac{\sin ^{2}(t)}{\sqrt{2}}, \cos (t) \sin (t)\right) .
$$

Proof. So: recall the formula for area that's given by Green's theorem: i.e. for D a region bounded by the simple closed curve c^{+}oriented positively (i.e. so that the
region D is on the LHS of the curve), we have

$$
A(S)=\frac{1}{2} \int_{c^{+}} x d y-y d x
$$

So, we can't apply this directly to c, as this curve is not a simple closed curve! Indeed, $c(\pi / 2)=c(3 \pi / 2)$. However, what we can do is use this formula to find the area of the "head" and the "tail," and simply sum these two areas together.

So: the head is parametrized positively by the curve c on the interval $[-\pi / 2, \pi / 2]$, and the tail is parametrized negatively by the curve c on the interval $[\pi / 2,3 \pi / 2]$; you can see this by drawing the curve c from 0 to 2π and drawing little arrows to show you which direction you're going.

As a result, we have that the area of the head is just

$$
\frac{1}{2} \int_{-\pi / 2}^{\pi / 2}\left(c_{1}(t) c_{2}^{\prime}(t)-c_{2}(t) c_{1}^{\prime}(t)\right) d t
$$

and of the tail is

$$
-\frac{1}{2} \int_{\pi / 2}^{3 \pi / 2}\left(c_{1}(t) c_{2}^{\prime}(t)-c_{2}(t) c_{1}^{\prime}(t)\right) d t
$$

(where the minus sign comes from the reversed orientation of the tail.)
So: we calculate!

$$
\begin{aligned}
& \frac{1}{2} \int_{a}^{b}\left(c_{1}(t) c_{2}^{\prime}(t)-c_{2}(t) c_{1}^{\prime}(t)\right) d t \\
= & \frac{1}{2} \int_{a}^{b}\left(\cos (t)-\frac{\sin ^{2}(t)}{\sqrt{2}}\right)\left(\cos ^{2}(t)-\sin ^{2}(t)\right)-(\cos (t) \sin (t))\left(-\sin (t)-\frac{2 \sin (t) \cos (t)}{\sqrt{2}}\right) d t \\
= & \frac{1}{2} \int_{a}^{b} \cos ^{3}(t)+\frac{\sin ^{4}(t)}{\sqrt{2}}-\frac{\sin ^{2} \cos ^{2}(t)(t)}{\sqrt{2}}+\frac{2 \sin ^{2}(t) \cos ^{2}(t)}{\sqrt{2}} d t \\
= & \frac{1}{2} \int_{a}^{b} \cos ^{3}(t)+\frac{\sin ^{2}(t)}{\sqrt{2}} d t \\
= & \frac{1}{2} \int_{a}^{b} \frac{3 \cos (t)-\cos (3 t)}{4}+\frac{1-\cos (2 t)}{2 \sqrt{2}} d t \\
= & \left.\frac{1}{8}\left(3 \sin (t)+\frac{\sin (3 t)}{3}+t \sqrt{2}-\frac{\sin (2 t)}{\sqrt{2}}\right)\right|_{a} ^{b} .
\end{aligned}
$$

Evaluating this at $a=-\pi / 2, b=\pi / 2$ gives that the area of the head is $2 / 3+\pi \sqrt{2} / 8$; evaluating at $a=\pi / 2, b=3 \pi / 2$ yields that the area of the tail is $-2 / 3+\pi \sqrt{2} / 8$; combining yields that the entire area is $\pi \sqrt{2} / 4$.

3. Vector fields over a Lissajous curve

Question 3.1. For F the vector field defined by

$$
F(x, y, z)=\left(x^{2}, y^{2}, z^{2}\right)
$$

and $c(t)$ the Lissajous curve parametrized by

$$
c(t)=(\sin (3 t+\pi / 4), \sin (t))
$$

find $\int_{c} F d s$.

Proof. So, if we merely directly calculate, we have that

$$
\begin{aligned}
\int_{C} F d s & =\int_{0}^{2 \pi}\left(\sin ^{2}(3 t+\pi / 4), \sin ^{2}(t), 0\right) \cdot(3 \cos (3 t+\pi / 4), \cos (t), 0) \\
& =\int_{0}^{2 \pi} 3 \cos (3 t+\pi / 4) \sin ^{2}(3 t+\pi / 4)+\cos (t) \sin ^{2}(t) d t \\
& =\int_{0}^{2 \pi} 3 \cos (3 t+\pi / 4) \sin ^{2}(3 t+\pi / 4) d t+\int_{0}^{2 \pi} \cos (t) \sin ^{2}(t) d t \\
& =\int_{1 / \sqrt{2}}^{1 / \sqrt{2}} u^{2} d u+\int_{0}^{0} v^{2} d v=0,
\end{aligned}
$$

where the substitutions in the last step were $u=\sin (3 t+\pi / 4)$ and $v=\sin (t)$.
Conversely, you could just notive that F is given by the gradient of the function $f(x, y, z)=\frac{x^{3}+y^{3}+z^{3}}{3}$, and thus that

$$
\int_{c^{\prime}} F d s=\iint \nabla \times(\nabla f) d s=\iint 0=0
$$

for any simple closed curve c^{\prime} (as the curl of a gradient is always 0). Breaking up our Lissajous curve into three simple closed curves then gives that the integral of F over c is 0 , as expected.

4. Integral tricks - I

Question 4.1. Calculate

$$
\iint_{S} x^{2}+y^{2} z-z^{3} / 3 d x d y d z
$$

where S is the unit sphere.

Proof. So, we can directly calculate this with the spherical coördinate transformation $(\theta, \phi) \mapsto(\sin (\phi) \cos (\theta), \sin (\phi) \sin (\theta), \cos (\phi))$

$$
\iint_{S} x^{2}+y^{2} z-z^{3} / 3 d x d y d z=
$$

$=\int_{0}^{2 \pi} \int_{0}^{\pi} \cos ^{2}(\theta) \sin ^{3}(\phi) \cos ^{2}(\theta)+\sin ^{2}(\theta) \sin ^{3}(\phi) \cos (\phi)-\frac{\cos ^{3}(\phi) \sin (\phi)}{2} d \phi d \theta$
$=\int_{0}^{2 \pi}\left(\int_{0}^{\pi} \cos ^{2}(\theta)\left(\frac{3 \sin (t)-\sin (3 t)}{4}\right) d \phi+\int_{0}^{\pi} \sin ^{2}(\theta) \sin ^{3}(\phi) \cos (\phi) d \phi-\int_{0}^{\pi} \frac{\cos ^{3}(\phi) \sin (\phi)}{2} d \phi\right) d \theta$
$=\int_{0}^{2 \pi} \cos ^{2}(\theta) \cdot \frac{4}{3}+0+0$
$=\frac{4}{3} \pi$.

Alternately, you can notice that

$$
\iint_{S} x^{2}+y^{2} z-z^{3} / 3 d x d y d z=\iint_{S}\left(x, y z,-\frac{z^{2}}{2}\right) \cdot(x, y, z) d x d y d z
$$

because the unit normal vector on the sphere is $n(x, y, z)=(x, y, z)$, we know that this is actually

$$
\iint_{S}\left(x, y z,-\frac{z^{2}}{2}\right) \cdot n d x d y d z
$$

and thus that we can apply Gauss's theorem to get

$$
\iint_{S}\left(x, y z,-\frac{z^{2}}{2}\right) \cdot n d x d y d z=\iiint_{B} 1+z-z d x d y d z=\iiint_{B} d s=\frac{4}{3} \pi
$$

the volume of the unit ball.
5. Integral tricks - II

Question 5.1. Calculate

$$
\iint_{S}(2 z, 0,2 y) \cdot d S
$$

where S is the unit sphere.

Proof. So, we can, again, directly calculate this with the spherical coördinate transformation $(\theta, \phi) \mapsto(\sin (\phi) \cos (\theta), \sin (\phi) \sin (\theta), \cos (\phi))$

$$
\begin{aligned}
& \iint_{S}(2 z, 0,2 y) d x d y d z= \\
= & \int_{0}^{2 \pi} \int_{0}^{\pi}(2 \cos (\phi), 0,2 \sin (\phi) \sin (\theta)) \cdot\left(-\sin ^{2}(\phi) \cos (\theta), \sin ^{2}(\phi) \cos (\theta),-\sin (\phi) \cos (\theta)\right) d \phi d \theta \\
= & \int_{0}^{2 \pi}\left(\int_{0}^{\pi}-2 \cos (\theta) \cdot \cos (\phi) \sin ^{2}(\phi) d \phi-\int_{0}^{\pi} 2 \sin ^{2}(\phi) \sin (\theta) \cos (\theta) d \phi\right) d \theta \\
= & \int_{0}^{2 \pi}\left(\int_{0}^{0}-2 \cos (\theta) \cdot u^{2} d u-\int_{0}^{\pi} \sin ^{2}(\phi) \sin (2 \theta) d \phi\right) d \theta \\
= & -\int_{0}^{2 \pi} \int_{0}^{\pi} \sin ^{2}(\phi) \sin (2 \theta) d \phi d \theta \\
= & -\int_{0}^{\pi} \int_{0}^{2 \pi} \sin ^{2}(\phi) \sin (2 \theta) d \theta d \phi \\
= & 0
\end{aligned}
$$

by using various trig identities, the substitution $u=\sin (\phi)$, and the fact that $\sin (2 \theta)$ has integral 0 over [$0,2 \pi$]. Alternately, you can notice that

$$
\iint_{S}(2 z, 0,2 y) d x d y d z=\iint_{S} \nabla \times\left(y^{2}, z^{2}, 0\right) d x d y d z
$$

applying Gauss's theorem then yields

$$
\iint_{S} \nabla \times\left(y^{2}, z^{2}, 0\right) d x d y d z=\iiint_{B} \operatorname{div}\left(\nabla \times\left(y^{2}, z^{2}, 0\right)\right) d x d y d z=0
$$

because the divergence of a curl is always 0 .
Finally, you could instead just use use Stokes's theorem, which says also that

$$
\iint_{S} \nabla \times\left(y^{2}, z^{2}, 0\right) d x d y d z=\int_{\partial S}\left(y^{2}, z^{2}, 0\right) d x d y d z=0
$$

because the unit sphere has no boundary.

