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Determinants: An Introduction

Week 5 Caltech 2011

1 Random Questions

1. Consider the following game, called “scream-toes:”

• To start, place n people so that they’re standing in a circle.

• Have everyone look down at the ground (the “down” phase.)

• Then, have each player randomly select another player’s toes, and look at them
(the “toes” phase.)

• Then, have all players look up at whichever player’s toes they were just looking
at. If two players are looking at each other, then they both scream (or shout
loudly, whichever they prefer.)

Show that the average number of screams for a given round of scream-toes is about
2/e, given enough players.

2. Suppose that A is a matrix with integer entries, such that the sum of the entries in
each of the rows of A is a multiple of 7. Prove that the determinant is divisible by 7.

2 The Determinant: Basic Definitions, and an Example

Definition. For a n × n matrix A, let Aij denote the matrix formed from A by deleting
the i-th row and j-th column from A.

Then, we can define the determinant of A recursively1 as follows: for 1× 1 matrices,
we define det(A) = a11, and for larger n× n matrices A, we define

det(A) =
n∑
i=1

(−1)i−1a1i · det(A1i).

To give an idea of how we use this recursive definition in practice, consider the following
example:

1A recursive definition is one that defines some object in terms of itself. In this case, we define the
determinant of a n × n matrix in terms of the determinants of smaller n − 1 × n − 1 matrices. So, to find
the determinant of (say) a 3× 3 matrix, we use our recursive definition to reduce the problem to finding the
determinants of 3 different 2 × 2 matrices, and then apply the recursive definition on each of those matrices
to reduce further to the case of 6 different 1 × 1 matrices, which we know how to do.
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Example. Find the determinant of the following matrix:

A =


3 1 4 1
5 9 2 6
5 3 5 8
9 7 9 3


Solution. By our definition, we know that

det(A) =

n∑
i=1

(−1)i−1a1i · det(A1i)

= 3 · det

 9 2 6
3 5 8
7 9 3

− 1 · det

 5 2 6
5 5 8
9 9 3

+ 4 · det

 5 9 6
5 3 8
9 7 3

− 1 · det

 5 9 2
5 3 5
9 7 9



Use the definition of the determinant again to expand each of these three by three matrices:

det

 9 2 6
3 5 8
7 9 3

 = 9 · det

(
5 8
9 3

)
− 2 · det

(
3 8
7 3

)
+ 6 · det

(
3 5
7 9

)
= 9(5 · 3− 8 · 9)− 2(3 · 3− 8 · 7) + 6(3 · 9− 5 · 7)

= −467.

det

 5 2 6
5 5 8
9 9 3

 = 5 · det

(
5 8
9 3

)
− 2 · det

(
5 8
9 3

)
+ 6 · det

(
5 5
9 9

)
= 5(5 · 3− 8 · 9)− 2(5 · 3− 8 · 9) + 6(5 · 9− 5 · 9)

= −171.

det

 5 9 6
5 3 8
9 7 3

 = 5 · det

(
3 8
7 3

)
− 9 · det

(
5 8
9 3

)
+ 6 · det

(
5 3
9 7

)
= 5(3 · 3− 8 · 7)− 9(5 · 3− 8 · 9) + 6(5 · 7− 3 · 9)

= 326.

det

 5 9 2
5 3 5
9 7 9

 = 5 · det

(
3 5
7 9

)
− 9 · det

(
5 5
9 9

)
+ 2 · det

(
5 3
9 7

)
= 5(3 · 9− 5 · 7)− 9(5 · 9− 5 · 9) + 6(5 · 7− 3 · 9)

= −24.
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Now, take these values and plug them into our original equation:

det(A) =
n∑
i=1

(−1)i−1a1i · det(A1i)

= 3 · det

 9 2 6
3 5 8
7 9 3

− 1 · det

 5 2 6
5 5 8
9 9 3

+ 4 · det

 5 9 6
5 3 8
9 7 3

− 1 · det

 5 9 2
5 3 5
9 7 9


= 3 · (−467)− 1 · (−171) + 4(326)− 1(−24)

= 98.

3 The Determinant: Some Exploratory Theorems

The determinant is a rather strange-looking thing. At first glance, it’s not remotely clear
why we’d ever want to study it; it seems complex and convoluted, and hardly like the kind
of thing we would ever intentionally want to work with.

Yet, as it turns out, the determinant is an incredibly useful object! In specific, we have
the following theorem:

Theorem 1 The determinant of a n×n matrix A is nonzero if and only if A is nonsingular.

In other words, the determinant – a single number that we can pretty quickly find from
a matrix – can instantly tell us if a matrix has an inverse, without bothering with all of the
row-reduction nonsense we normally have to do. So this is remarkably useful!

How can we prove such a thing? Well, at the moment, we really can’t: we barely
understand what the determinant does in general, and thus aren’t probably going to have
much luck starting on this theorem right now.

So, what we’ll do instead is see what we *can* prove about the determinant, and see if
we can use these insights to eventually try and prove this result.

To start: if we want to understand what the determinant does to matrices, we should
begin by looking at what it does to the simplest matrix we can think of: the identity matrix!

Theorem 2 If In is the n× n identity matrix, then det(In) = 1.

Proof. So: how do we prove things about the determinant? Well, we defined the deter-
minant recursively, with a definition that told us how to find 1 × 1 determinants and how
to build up this knowledge to find n × n determinants. A natural idea, then, would be to
prove things in a similar way: to demonstrate thing for a base case, and then to build up
these results for larger matrices. In other words, we want to use induction! Specifically, for
this proof, let’s proceed by induction on n.

For the 1× 1 matrix I1 = (1), our claim is trivially true: det(I1) = 1.
For our inductive step, we assume that our hypothesis holds for n, and seek to prove

our claim for n+ 1.
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So: by definition, we know that

det(In+1) = (−1)0 · 1 · det((In+1)11) + (−1)1 · 0 · det((In+1)12) + . . .+ (−1)n−1 · 0 · det((In+1)1,n+1)

= det((In+1)11).

However, removing the first row and first column of the n+ 1× n+ 1 identity matrix just
leaves In, the n×n identity matrix: so this is just det(In), which we know to be 1 from our
inductive hypothesis.

We now understand the identity matrix. What should we look at now?
Well: one of the most basic things we can do to a matrix are the various row operations:

i.e. given a matrix, we will often either

• multiply some row by a constant λ,

• swap two rows, or

• add λ times one row to another.

What do these three properties do to the determinant? I.e. if we have a matrix and
perform one of these row operations, how does the determinant change?

We explore this in the next three theorems:

Theorem 3 Suppose that A is a n× n matrix. If A′ is the matrix acquired by multiplying
the k-th row of A by some constant λ, then det(A′) = λdet(A).

Proof. We proceed by induction on n.
For n = 1, this is trivial: if A = (a11), then A′ is necessarily (λa11), and thus

det(A′) = det((λa11)) = λa11 = λ · det(A).

Assume that our result holds for all n×n matrices. We now seek to prove our claim for
all n+ 1× n+ 1 matrices: i.e. for any n+ 1× n+ 1 matrix A, constant λ, and row k, we
want to show that the matrix A′ formed by multiplying A’s k-th row by λ has determinant
λ · det(A).

There are two possible cases. Either k = 1, in which case A′ is of the form
λa11 λa12 . . . λa1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 ,

and therefore

det(A′) =

n+1∑
i=1

(−1)i−1λa1i · det(A′1i) = λ ·
n+1∑
i=1

(−1)i−1a1i · det(A1i) = λ · det(A),
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where we justify saying that A1i and A′1i are the same by saying that the only places where
A and A′ differ is in their first row, and we’ve deleted that in both A1i and A′1i.

The only case remaining to consider is when k > 1; in this situation, we have that A′ is
of the form 

a11 a12 a13 . . . a1n
...

...
...

. . .
...

λak1 λak2 λak3 . . . λakn
...

...
...

. . .
...

an1 an2 an3 . . . ann

 ,

and thus that

det(A′) =

n+1∑
i=1

(−1)i−1a1i · det(A′1i).

However, we know that (because k > 2 each of the A′1i are just the matrix A1i with one row
multipled by λ. Because these are n×n matrices, we can then use our inductive hypothesis
to note that det(A′1i) = λ det(A1i, and thus that

det(A′) =
n+1∑
i=1

(−1)i−1a1i · det(A′1i)

=
n+1∑
i=1

(−1)i−1a1i · λdet(A1i)

= λ · det(A).

Thus, for any k, we’ve proven that multiplying the k-th row of A by λ multiples the
determinant by λ as well.

Theorem 4 Suppose that A is a n × n matrix. If A′ is the matrix acquired by swapping
the two rows i, j in A, then det(A′) = −det(A).

Proof. We again proceed by induction on n.
Our base case is n = 2, as this is the first case where we have two distinct rows to swap.

However, our claim is still trivial, as when we swap the only two rows in any 2× 2 matrix,

we have that for any matrix A =

(
a b
c d

)

det

(
a b
c d

)
= ac− bd = −1 · (bd− ac) = −1 · det

(
c d
a b

)
.

So: we now assume that our result holds for any n× n matrix and rows i < j, and seek
to prove it for n+1×n+1 matrices. To do this, we first notice the following fact: it suffices
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to prove that our claim holds in the special case when j = i+ 1. Why is this? Well, notice
that if you swap the rows

(i and i+ 1), (i+ 1 and i+ 2), . . . (j − 1 and j),

you’ve put the i-th row in the j-th spot and decremented all of the other rows between i
and j by one spot. Now, if you swap

(j − 1 and j − 2), (j − 2 and j − 3), . . . (i+ 1 and i),

this moves all of the other rows back to their original position *except* for the j-th row,
which is now in the i-th spot. So this process switches the i-th and j-th rows, and does so
with 2(j− i)−1-many swaps, which is always an odd number of swaps. So, if our conjecture
– that switching rows multiplies the determinant by −1 – holds for just adjacent rows, this
process shows that it must hold for all rows, because we can “create” any swap of rows out
of an odd number of swaps of adjacent rows, and (−1)odd is always −1.

Excellent. Let A be a n+ 1× n+ 1 matrix, and let i, i+ 1 be the pair of rows we seek
to swap. Then there are two cases:

i = 1. In this case, A′ is of the form
a21 a22 a23 . . . a2n
a11 a12 a13 . . . a1n
a31 a32 a33 . . . a3n
...

...
...

. . .
...

an1 an2 an3 . . . ann

 .

Now, examine det(A′):

det(A′) =
n+1∑
l=1

(−1)l−1a2l · det(A′1l)

=
n+1∑
l=1

(−1)l−1a2l ·

(∑
k<l

(−1)k−1a1k det(A′12,lk) +
∑
k>l

(−1)k−2a1k det(A′12,lk)

)

Why did we write det(A′1l) as this crazy two-part sum above? Well, if you look at what
A′1l is, it’s the matrix formed from A′ after deleting the first row and the l-th column. So,
if you’re expanding the determinant of this matrix, what are you doing? You’re starting
from the first entry in the second row of A′ (because you deleted the first row), and then
adding entries × some determinant in alternating sign all the way down A′1l. Until you get
to the l-th column, you can just find the sign of these entries by taking (−1)k−1, as you
just started at k = 0 and have alternated: but once you get to the l-th column, you skip
it, because it was deleted in A′1l! So, if you’re alternating sign, once you get past the l-th
column you have to adjust your signs for the column you skipped: i.e. the sign of an entry
past the l-th column is (−1)k−2, instead of (−1)k−1.
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For similar reasons, we can expand det(A) into such a sum as well:

det(A) =

n+1∑
k=1

(−1)k−1a1k · det(A1k)

=
n+1∑
k=1

(−1)k−1a1k ·

(∑
l<k

(−1)l−1a2l det(A12,lk) +
∑
l>k

(−1)l−2a2j det(A12,lk)

)
.

We claim that the first one of these sums is the negative of the other. To see this, simply
pick any pair l 6= k. If l < k, then the a1ka2l term in det(A′)’s determinant is

(−1)l−1 · a2l · (−1)k−2a1k det(A′12,lk) =

and the a1ka2l term in det(A)’s determinant is

(−1)k−1 · a1k · (−1)l−1a2l det(A12,lk).

Because the matrices A and A′ only differ in their first two rows, we know that det(A′12,lk) =
det(A12,lk); therefore, by combining powers of −1, we can see that the A′ terms are precisely
−1 times the A terms.

Similarly, if we examine all of the other terms – i.e. the terms where the a1ka2l is such
that k < l – we have that the det(A′) terms are of the form

(−1)l−1 · a2l · (−1)k−1a1k det(A′12,lk) =

and the det(A) terms are of the form

(−1)k−1 · a1k · (−1)l−2a2l det(A12,lk).

Again, they disagree by simply their sign. So, because every individual term in the
det(A′) sum is precisely −1 times the corresponding term in the det(A) sum, we can say
that det(A) = −det(A′).

So, the case when i = 1 is done! Don’t worry: the case when i > 1 is far easier.
In fact, because when i > 1 our matrix is of the form

a11 a12 a13 . . . a1n
...

...
...

. . .
...

a(i+1)1 a(i+1)2 a(i+1)3 . . . a(i+1)n

ai1 ai2 ai3 . . . ain
...

...
...

. . .
...

an1 an2 an3 . . . ann


,

we have that

det(A′) =

n+1∑
k=1

(−1)k−1a1k · det(A′1k),
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where the A′1j ’s are all just the matrices A1j with two rows swapped. By our inductive
hypothesis, we then have that det(A′1k) = −det(A1k), and thus that

det(A′) =

n+1∑
k=1

(−1)k−1a1k · det(A′1k)

= −
n+1∑
k=1

(−1)k−1a1k · det(A′1k)

= −det(A).

We now study the last remaining row operation:

Theorem 5 Suppose that A is a n × n matrix. If A′ is the matrix acquired by taking A
and adding λ times the j-th row of A to its k-th row, then det(A′) = det(A).

Proof. We actually don’t need to proceed by induction here, though we do need to consider
two cases.

When n = 2, this is trivial, as for A =

(
a b
c d

)
we either have

det(A′) = det

(
a+ λc b+ λc
c d

)
= (a+ λc)b− (b+ λc)d = ac− bd = det(A), or

det(A′) = det

(
a b

c+ λa d+ λb

)
= a(d+ λb)− b(c+ λa) = ac− bd = det(A).

When n > 2, we can always assume that k, the row we’re adding to, is 1. Why is this?
Well, if it’s not 1, we can simply swap the k-th and first rows, and then swap two other
non-k rows, which changes the determinant by (−1) · (−1) = 1. (Note that we need three
rows to do this; hence n = 2 is treated as a special case.)

In this case, we have that A′ is of the form
a11 + λaj1 a12 + λaj2 . . . a1n + λajn

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 .

Therefore, if we expand det(A′), we get

det(A′) =

n+1∑
i=1

(−1)i−1(a1i + λaji) · det(A′1i)

=

n+1∑
i=1

(−1)i−1a1i det(A′1i) + λ

n+1∑
i=1

(−1)i−1aji · det(A′1i)
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If we use the observation that (because A and A′ agree on every row but the first) A1i = A′1i,
we can then see that

det(A′) =

n+1∑
i=1

(−1)i−1a1i det(A1i) + λ

n+1∑
i=1

(−1)i−1aji · det(A1i)

= det(A) + det



aj1 aj2 aj3 . . . ajn
a21 a22 a23 . . . a2n
...

...
...

. . .
...

aj1 aj2 aj3 . . . ajn
...

...
...

. . .
...

an1 an2 an3 . . . ann


.

Notice that because the matrix above has identical first and j-th rows, we can swap
those two rows without changing the matrix (and thus without changing its determinant.)
However, we know that swapping any two rows of a matrix multiplies the determinant by
−1: therefore, we know that the matrix above must have determinant 0 (as 0 is the only
number x such that (−1)x = x.)

Thus, we have that det(A′) = det(A), as claimed.

To summarize, we’ve proven the following four things:

• The determinant of the identity matrix is 1.

• Multiplying one of the rows of a matrix by some constant λ also multiplies that
matrix’s determinant by λ.

• Switching two rows in a matrix switches the sign of that matrix’s determinant.

• Adding a multiple of one row to another in a matrix does not change its determinant.

These are relatively simple facts, that we were able to deduce in about a hour’s worth
of blindly using induction and expanding sums: yet, they will allow us to prove a host of
rather difficult theorems without even breaking a sweat! To see why, it’s useful to use the
language of elementary matrices, which we review in the next section:

4 A Quick Aside: Elementary Matrices

So, we have all of these different kinds of row operations we can perform on matrices. A
natural question to ask, then, is the following: Can we do these row operations to matrices
by simply multiplying by some sort of special matrix? In other words, is there a n × n
matrix that will swap the first two rows of anything you multiply it with? Or a matrix that
will add 3 times the second row to the fourth row of any matrix you multiply it with?

As it turns out, yes! These matrices are called elementary matrices, which we review
below:

Definition. There are three different kinds of elementary matrices, corresponding to
the three different types of row operations. We list them here:
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Emultiply row k by λ =



1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 λ 0 . . . 0
0 0 0 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 1


If the λ is in the (i, i)-th spot, multiplying A on the left by this matrix multiplies A’s i-th

row by λ.

The matrix above is the standard identity matrix with its i-th and j-th columns
(highlighted) switched. Multiplying A on the left by this matrix switches A’s i-th and j-th

rows.

Eadd λ·row j to row i =



1 0 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 1 0 . . . 0
0 0 λ 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 1


If the λ is in the (i, j)-th spot, multiplying A on the left by this matrix adds λ times row j

of A to row i of A.

Theorem 6 The matrices above do what they say they do.

Proof. Left to the reader! Seriously, though, it’s easy; just check it.

So, in the language of elementary matrices, the three results we’ve proven about row
operations and the determinant can be restated as follows:

1. For any matrix A,

det(Emultiply row k by λ ·A) = det(Emultiply row k by λ) · det(A) = λ det(A).
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2. For any matrix A,

det(Eswitch rows i and j ·A) = det(Eswitch rows i and j) · det(A) = −det(A).

3. For any matrix A,

det(Eadd λ·row j to row i ·A) = det(Eaddλ·row j to row i) · det(A) = det(A).

5 The Determinant: Key Results

With these results in hand, we move to our first large theorem:

Theorem 7 For any n× n matrix A, A is nonsingular if and only if det(A) 6= 0.

Proof. To prove this theorem, we need to prove two statements: (1) whenever A is non-
singular, det(A) 6= 0, and (2) whenever A is singular, det(A) = 0.

We start by proving the first statement. Assume that A is nonsingular. Then, we know
that A’s reduced row-echelon form is the identity matrix, by definition. In other words, we
know that we can start with the identity matrix I, and perform a series of row operations
r1, . . . rn to transform I into A.

If we let E1, . . . En be the elementary matrices corresponding to these row operations,
this just says that we have elementary matrices E1, . . . En such that

A = E1 · . . . · En · I.

Now, if we take determinants of both sides, we have that

det(A) = det(E1 · . . . · En · I);

finally, because we’ve proven that the determinant distributes across all three kinds of
elementary matrices, we have at last that

det(A) = det(E1) · . . . · det(En) · det(I).

However, we know that the determinants of elementary matrices are either λ 6= 0, −1, or
1 for the three various kinds of elementary matrices: therefore, we know that the product
of all of the values on the right-hand side above is nonzero, as none of the individual terms
are 0. Therefore, we’ve shown that det(A) 6= 0, as claimed.

Now, all we have to do is prove the opposite direction: that A being singular implies that
det(A) = 0. To do this, simply recall that A being singular implies that the reduced row-
echelon form of A has an all-zero row: i.e. that there are a series of row operations r1, . . . rn
and some matrix M with an all-zeroes row such that performing these row operations on
M creates A.

As before, if we let E1, . . . En be the row operations corresponding to these row opera-
tions, we then have that

A = E1 · . . . · En ·M
⇒ det(A) = det(E1 · . . . · En ·M)

= det(E1) · . . . · det(En) · det(M).
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By swapping rows if necessary, we can insure that M ’s zero row is the first row in M ;
therefore, by the definition of the determinant, we know that det(M) = 0, and thus that
det(A) = 0 as well. This establishes the other side of our “if and only if” claim; so we have
proven our theorem.

Theorem 8 For any pair of n× n matrices A,B, det(AB) = det(A) · det(B).

Proof. The language of elementary matrices makes this proof as simple as the one above
it!

To start, notice that if either A or B are singular, AB must also be singular (as B(AB)−1

is a right inverse for A whenever (AB)−1 exists; similarly, (AB)−1A is always a left inverse
for B whenenver (AB)−1 exists.)

Therefore, whenever either det(A) or det(B) = 0, we know that det(AB) is also 0, by
our earlier theorem. So it suffices to prove our claim when both det(A) and det(B) are
nonzero: i.e. when both A and B are nonsingular.

In this case, just as before, notice that we can always find elementary matrices EA1 , . . . E
A
n , E

B
1 , . . . E

B
m

such that

A = EA1 · . . . · EAn , and

B = EB1 · . . . · EBm.

Then, we have that

det(AB) = det(EA1 · . . . · EAn · EB1 · . . . · EBm)

= det(EA1 ) · . . . det(EAn ) · det(EB1 ) · . . . det(EBm)

= det(EA1 · . . . · EAn ) · det(EB1 · . . . · EBm)

= det(A) det(B).

So we’ve proven our claim!

Theorem 9 For any n× n matrix A, det(AT ) = det(A).

Proof. This is the third (and final) theorem that we can prove trivially with our elementary
matrix notation.

To start, first notice that

(Eswap rows i and j)
T = Eswap rows i and j,

(Emultiply row k by λ)T = Emultiply row k by λ, and
(Eadd λ times row j to row k)T = Eadd λ times row k to row j.

(Check these by hand if you’re not persuaded; it’s pretty quick!)
Because of the above observations, we know that taking the transpose of any elementary

matrix doesn’t change its type or constant λ (for those that involve a constant λ: therefore,
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we know that transposition doesn’t change the determinant with respect to elementary
matrices. In other words,

det((Eswap rows i and j)
T ) = det(Eswap rows i and j)

det((Emultiply row k by λ)T ) = det(Emultiply row k by λ), and
det((Eadd λ times row j to row k)T ) = det(Eadd λ times row j to row k).

Now, we proceed just like we did in our earlier problems. First, notice that because A·A−1 =
I = (A · A−1)T = (A−1)TAT whenever either A or AT have an inverse, we know that A
being singular is equivalent to AT being singular, and thus det(A) = 0 iff det(AT ) = 0.

Now, suppose that det(A) 6= 0. Then, as before, we can write

A = E1 · . . . · En
⇒ det(A) = det(E1 · . . . · En)

= det(E1) · . . . · det(En)

= det(ET1 ) · . . . · det(ETn )

= det(ETn ) · . . . · det(ET1 )

= det(ETn · . . . · ET1 )

= det(AT ).

So we’ve proven our claim.

This last theorem then allows us to pretty much replace the word “row” with the word
“column” in all of our previous theorems, just by taking the transpose and working there!
The following theorem makes this explicit:

Theorem 10 We can expand the determinant of any matrix along its first column, instead
of its first row. In other words,

det(A) =
n∑
i=1

(−1)i−1ai1 det(Ai1).

Furthermore, the three theorems we proved about row operations on matrices and deter-
minants have analogues with respect to column operations:

• Multiplying one of the columns of a matrix by some constant λ also multiplies that
matrix’s determinant by λ.

• Switching two columns in a matrix switches the sign of that matrix’s determinant.

• Adding a multiple of one column to another column in a matrix does not change its
determinant.

Proof. To prove the first claim, simply note that because det(A) = det(AT ), we have

det(A) = det(AT ) =
n∑
i=1

(−1)i−1ai1 det(Ai1).
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Similarly, if we multiply the column of a matrix by some constant λ, we just need
to take its transpose, multiply by the appropriate row-elementary matrix, and then take
the transpose again. As taking the transpose never changes the matrix, the only step
that changes the determinant is when we multipled by the row-elementary matrix, which
multiplied the determinant by λ. Identical reasoning proves these results for the other two
column operations.

14


	Random Questions
	The Determinant: Basic Definitions, and an Example
	The Determinant: Some Exploratory Theorems
	A Quick Aside: Elementary Matrices
	The Determinant: Key Results

