
Math 1b TA: Padraic Bartlett

Recitation 9: Probability Matrices and Real Symmetric Matrices

Week 9 Caltech 2011

1 Random Question
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2 Homework comments

• Section average: 72/80 ∼= 90%. This was about 2− 3% above the class average; nice
work!

• As the above comment suggests, people did pretty well! There isn’t much to say, other
than “please include explanations of all the things you do.”

Today, our talk is pretty much split into two topics: probability matrices and real
symmetric matrices. For each subject, we’ll include examples of both the calculations
you’ll be expected to do on the HW, as well as proofs that you might be asked to understand
or replicate.

3 Probability Matrices: Definitions and Examples

Definition. A n× n matrix P is called a probability matrix if and only if the following
two properties are satisfied:

• P ≥ 0; in other words, pij ≥ 0 for every entry pij of P .

• The column sums of P are all 1; in other words,
∑n

i=1 pij = 1, for every j.

Why do we call these kinds of matrices probabilitiy matrices? Well, consider the
following way of interpreting such a matrix P :

• Suppose that you have an object that is capable of being in n different states. For
example, if the object you’re modeling is a Caltech undergrad, you could roughly
model them as having the following three distinct states:

{sleeping, doing sets, eating}
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• Suppose furthermore that at the end of every hour ( or more generally, at the end of
every step, where your step size is some arbitrary unit), the undergrad you’re studying
has certain probabilities of switching from the state they’re in into a different state.
I.e. you could assume that if your undergrad is working on a set for a hour, there’s a
decent chance (30%) that they pass out because it’s difficult, a better chance (60%)
that they keep working on the set, and a small chance (10%) that they get hungry
and stop for a sandwich.

• If you have this information for all of your states, you can create a probability matrix
with this data! To do this, let pij contain the probability of switching from state j to
state i. Then, we have a matrix all of whose columns sum to 1 (this is because your
undergrad is always in *one* of these three states, and thus when they leave any state
j the sum of their chances of landing in the other states must be 1.) In other words:
a probability matrix!

As it turns out, this method of describing a finite-state system isn’t just notationally
useful: we in fact have a pair of remarkably useful theorems for probability matrices!

4 Probability Matrices: Two Useful Theorems

Theorem 1 If we have a probability matrix P representing some finite system with n states
{1, . . . n}, then the probability of starting in state j and ending in state i in precisely m steps
is the (i, j)-th entry in Pm.

Proof. Last recitation, we proved that for a n× n matrix P , the (i, j)-th entry of Pm can
be written as the sum

n∑
c1,...cm−1=1

pi,c1 · pc1,c2 , · . . . · pcm−2,cm−1 · pcm−1,j

But what *is* one of these terms pi,c1 · pc1,c2 , · . . . · pcm−2,cm−1 · pcm−1,j? Well, if we read
it from right to left, it’s just the product

(probability of going from j to cm−1) · (probability of going from cm−1 to cm−2)· ...
·(probability of going from c1 to i).

If we just multiply everything out, we can see that this is just the probability that we take
the specific path j → cm−1 → . . .→ i from j to i! And our sum has one term for every such
path from i to j: therefore, because our sum is just the sum of all of these probabilities, it
represents the chances of us taking any of these paths from i to j. Therefore, the (i, j)-th
entry represents the probability of us going from j to i in m steps along any of these paths
– which is what we claimed.

An example of this theorem follows below:
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Example. Suppose we have a Caltech student capable of entering three possible states
{sleeping1, sets2, eating3}, and suppose it switches between these three states every hour
according to the following probability matrix:

P =

 .4 .3 0
.5 .7 .7
.1 0 .3


(I.e. if our student is asleep at noon, it has a 40% chance of staying asleep at 1, a 50%
chance of waking up and starting a set, and a 10% chance of deciding it’s hungry for a
kebab.)

If your student is asleep at 2am, what are the chances that it will be working on a set
at 4am?

Solution. So: by the theorem above, we just need to look at the (2, 1) cell in P 2 to figure
this out. Calculating gives us that

P 2 =

 .31 .33 21
.62 .64 .7
.07 .03 .09


and thus that our poor student has a 62% chance of working on their sets at 4am.

This theorem allows us to say what happens at specific points and times in the future.
However: what if we’re not interested in specific points and times in the future, but rather
in the long-term behavior of the system as a whole? The following two definitions and pair
of theorems tell us what to do in that situation:

Definition. A vector v ∈ Rn is called a probability vector if and only if
∑n

i=1 vi = 1.

Definition. For a probability matrix P , v is called a stable vector if and only if v is a
probability vector that is also an eigenvector of P with corresponding eigenvalue 1.

Theorem 2 Every probability matrix has at least one stable vector.

Theorem 3 If P is a probability matrix such that Pm > 0 for some m – i.e. pij > 0 for
every entry in Pm, for some m – then P has exactly one stable vector, x.

Furthermore, this stable vector is an attractor for P : in other words, if v is any
probability vector, we have that limn→∞ P

n ·v = x. Basically, this means that if we run the
system represented by P for long enough, the odds of us being in any one of our n states
are given by the entries of x .

The proof of this theorem is in the lecture notes and is kinda tricky, so we’ve omitted it
here because of time constraints. Let me know if you have questions about it, though!

Instead, we offer an example, to illustrate what’s going on here:

Example. If we take our Caltech student from earlier, in the long run, what are they more
likely to be doing – sets or sleeping?
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Solution. So, as we noted before, our probability matrix is

P =

 .4 .3 0
.5 .7 .7
.1 0 .3

 .

In our earlier example, we showed that P 2 > 0; therefore, we know that there is exactly
one stable vector, and this stable vector tells us precisely what our student is likely to be
doing in the long run. So: let’s find it!

Recall that a stable vector is simply an eigenvector for 1 that happens to also be a
probability vector. So, to find our stable vector x, we simply need to find E1:

E1 = nullspace (A− I)

= nullspace

 −.6 .3 0
.5 −.3 .7
.1 0 −.7


= all (x, y, z) such that (A− I)

= nullspace

 −.6 .3 0
.5 −.3 .7
.1 0 −.7

 ·
 x

y
z

 = (0, 0, 0); i.e.

0 = 3y − 6x,

0 = 5x− 3y + 7z, and

0 = x− 7z.

Solving the above equations for x, y and z tells us that E1 is made up out of vectors of the
form c · (7, 14, 1). Thus, if we want a vector of this form to have its entries sum up to 1, we
simply let c = 1/22 and get that our unique stable vector is

(
7

22
,
14

22
,

1

22

)
.

Consequently, we can say that in the long run, our student is twice as likely to be
studying (14/22) as it is to be sleeping (7/22).

This is most of what we know about probability matrices! We now change gears here
somewhat abruptly, to begin our discussion of real-valued symmetric matrices:

5 Real Symmetric Matrices: A Theorem and its Use

First, as a reminder:

Definition. A n×nmatrixA is called symmetric iff aij = aji, for every i and j; equivalently,
A is called symmetric iff A = AT .
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In lecture, we discussed the following remarkable theorem about real-valued symmetric
matrices:

Theorem 4 If A is a real-valued symmetric matrix, then

• A has only real-valued eigenvalues,

• A is diagonalizable, and furthermore

• A is diagonalizable by an orthogonal matrix1: in other words, there is an orthogonal
matrix E made of eigenvectors and diagonal matrix D made out of eigenvalues such
that A = EDET .

As the proof was discussed in class and is kinda ponderous, we omit it here in favor of
discussing two things: (1) how to use the above theorem, and (2) an example of the kinds
of proofs you might be asked to do on HW/the final involving symmetric matrices.

First: how *do* we use this theorem? Well, as it turns out, you can pretty much follow
the exact same process we used for diagonalizing matrices in general. Suppose that we have
a real symmetric matrix A; then, if we want to diagonalize it, we need to simply do the
following:

1. First, find all of A’s eigenvalues λ1 . . . λk.

2. Once you’ve done that, find each eigenspace Eλi .

3. For each eigenspace Eλi , find an orthonormal basis for Eλi . This is the only
difference between this process and normal diagonalization – the bit about making
sure that your basis is orthogonal. (To do this, simply use Gram-Schmidt on a
normal basis for Eλi , and then normalize all of your vectors by dividing by their
length – if you’ve forgotten how to do Gram-Schmidt, consult week 4’s notes, or
contact me!)

4. Take all of the vectors you got from these orthogonal bases, and use all of them as the
columns in a matrix E; then, take their corresponding eigenvalues, and put them in
the diagonal entries in some diagonal matrix D. Then, A = EDET ! and you’re done.

Again, for emphasis: the *only* difference between this and normal diagonalization is
the part about finding orthogonal bases for the Eλi ’s.

We include an example of this algorithm here:

Example. Diagonalize the matrix

A =

 5 1 0
1 5 0
0 0 6


with orthogonal matrices: i.e. find an orthogonal matrix E and diagonal matrix D such
that A = EDET .

1A is called an orthogonal matrix iff A−1 = AT : i.e. iff A2 = I.

5



Solution. We follow our blueprint above.
First, we find A’s eigenvalues, by calculating its characteristic polynomial:

det(λI −A) = det

 λ− 5 −1 0
−1 λ− 5 0
0 0 λ− 6


= (λ− 5) · det

(
λ− 5 0

0 λ− 6

)
− (−1) · det

(
−1 0
0 λ− 6

)
= (λ− 5)2(λ− 6)− (λ− 6)

= ((λ− 5)2 − 1)(λ− 6)

= (λ2 − 10λ+ 25− 1)(λ− 6)

= (λ− 6)(λ− 4)(λ− 6)

Therefore, 6 and 4 are our eigenvalues. We now find their eigenspaces:

E4 = nullspace(A− 4I)

= nullspace

 1 1 0
1 1 0
0 0 2

 ,

which is spanned by the vector (−1, 1, 0). Normalizing gives us the vector (−1/
√

2, 1/
√

2, 0).

E6 = nullspace(A− 6I)

= nullspace

 −1 1 0
1 −1 0
0 0 0

 ,

which consists of all vectors (x, y, z) such that x = y. One such vector is (1, 1, 1); by
using Gram-Schmidt or just being clever, another such vector that’s orthogonal to (1, 1, 1)
is (1, 1,−2). Normalizing gives us (1/

√
3, 1/
√

3, 1/
√

3) and (1/
√

6, 1/
√
,−2/

√
6) as our

vectors.
Now that we’ve found all of our vectors, we use them as the columns of the matrix

E =

 −1/
√

2 1/
√

3 1/
√

6

1/
√

2 1/
√

3 1/
√

6

0 1/
√

3 −2/
√

6

. Then, if we let D =

 4 0 0
0 6 0
0 0 6

 be the diagonal

matrix corresponding to the appropriate eigenvalues of our matrix, by our theorem, we
know that

A = EDET

as claimed.
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6 Real Symmetric Matrices: A Sample Proof

Finally, we have an example that illustrates the kind of proofs we may ask you to do in
your HW, or on the final, involving symmetric matrices:

Proposition 5 A matrix A is symmetric if and only if 〈x, Ay〉 = 〈Ax,y〉 for every pair of
vectors x,y ∈ Rn.

Proof. As this is an “if and only if” proof, we must prove both directions of our claim.
We start by assuming that A is symmetric. Then, if we look at 〈Ax,y〉 for any pair of

vectors x,y, we have (by definition!) that

〈Ax,y〉 = (Ax)T · y = xT ·AT · y = xT ·A · y = xT · (Ay) = 〈x, Ay〉,

which is exactly what we claimed.
Conversely, assume that 〈x, Ay〉 = 〈Ax,y〉 for every pair of vectors x,y. It’s not entirely

clear how to proceed from here: so, let’s try just exploring and seeing what this property
gives us. In particular, let’s see what this property tells us about A when we let x,y be
the standard basis vectors of Rn: i.e. x = ei = the vector that has a 1 in its i-th spot and
zeroes elsewhere, and y = ej = the vector that has a 1 in its j-th spot and zeroes elsewhere.
(In general, if you have a vector property and don’t understand it, try to find out what it
means when you plug in things like the standard basis vectors, the all-1’s vector, and any
simple examples you can think of. This will often work!)

So: with x,y defined as above, we have that

A · x =

 a11 . . . a1n

. . .
. . . . . .

an1 . . . ann

 · ei
= the i-th column of A

⇒ 〈Ax,y〉 = (the i-th column of A) · ej
= aji, and

A · y =

 a11 . . . a1n

. . .
. . . . . .

an1 . . . ann

 · ej
= the k-th column of A

⇒ 〈x, Ay〉 = ei · (the i-th column of A)

= aij

But if these two inner products are equal, we’ve just shown that aij = aji, for every i
and j! In other words, A must be symmetric, as claimed.
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