
Math 1b TA: Padraic Bartlett

Recitation 7: Diagonalization!

Week 7 Caltech 2011

1 Random Question

Suppose you have a square S and nine lines l1, . . . l9, such that each line divides S into a
pair of quadrilaterals, so that the ratio formed by the areas of these quadrilaterals is 2:3.

Show that there must be three of these lines that meet at a common point.

2 Homework comments

• Section average: 70/80, or about 87.5%. This is roughly identical/slightly higher than
the course average.

• People did really really well! Pretty much the main source of points lost here wasn’t
people failing to understand anything; rather, it was just people not attaching their
(Mathematica/Wolfram Alpha/Matlab/Maple/Hex) code1! So, I’m pretty pleased.

3 Diagonalization: Theorems, Definitions, and Motivations

To start off, we restate the two theorems we use in diagonalizing matrices, and review all
of our relevant definitions (including, say, just what diagonalization is.)

Theorem 1 If A is a n× n matrix with distinct eigenvalues λ1, . . . λk, such that

k∑
i=1

geometric multiplicity(λi) = n,

then we can find a basis for Rn made entirely out of vectors which are eigenvectors for
A. (As an aside: the geometric multiplicity of an eigenvalue is the dimension of the
eigenspace associated to λi. Equivalently, it is the largest number of linearly independent
vectors you can find that are all eigenvectors for A, with λi as their eigenvalue.)

1Relatedly: ATTACH YOUR CODE.
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Furthermore, if {vi,j}ni
j=1 is a basis for the eigenspace of λi, for every i, we can explicitly

write out our basis for Rn as the following union:

eigenvector basis for Rn :=

k⋃
i=1

 ni⋃
j=1

vi,j

 .

The above theorem is kind of an odd thing: when would we want to find such a basis?
What would we do with it?

The answer to the above questions, in a word, is diagonalization! and in a theorem,
is our next result:

Theorem 2 Suppose that A is a n×n matrix such that we can find a basis {e1, . . . en} for
Rn made out of A’s eigenvectors. (In other words, suppose that A is a matrix to which we
can apply our above theorem!)

Then A is diagonalizable! Specifically, there is an invertible matrix

E =

 | | |
e1 e2 . . . en
| | |


made out of the eigenvectors e1, . . . en, such that such that

E−1AE =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λn

 ,

where the numbers λ1, . . . λn are the eigenvalues corresponding to the eigenvectors e1, . . . en.

So: why would we ever want to do this? Well, one excellent application is for taking
powers of matrices! For example, suppose we have a n× n matrix A, and we want to find
what happens to A when we raise it to some power – say, 3 · 108. How can we calculate
this?

Well, one (näıve) way to try this is just to perform matrix multiplication. How many
operations will this take?

Well: whenever we multiply two matrices, to find the entry in the (i, j)-th spot we have
to multiply the i-th row with the j-th column. This will require us to perform 2n − 1
operations: n operations to multiply the relevant matrix entries together, and n − 1 more
operations to add them all up. Our matrix is a n × n grid, so we’ll have to perform the
above process n2 many times per pair of matrices multipled; and we’re performing 3 ·108−1
many such instances of matrix multiplication.

So, in total, we’re performing about

6n3 · 108
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many operations to find A3·108 , which for many reasonable values of n will quickly become
massive and fairly intractible.

However, suppose furthermore that we know A is diagonalizable: i.e. there is a matrix

E such that E−1AE =

 λ1 . . . 0
...

. . .
...

0 . . . λn

 . Then, by solving for A in the equality above, we

can write

(A)3·10
8

=

E ·
 λ1 . . . 0

...
. . .

...
0 . . . λn

 · E−1


3·108

= E ·

 λ1 . . . 0
...

. . .
...

0 . . . λn

 ·����XXXXE−1 · E ·

 λ1 . . . 0
...

. . .
...

0 . . . λn

 ·����XXXXE−1 · E . . .

= E ·

 λ1 . . . 0
...

. . .
...

0 . . . λn


3·108

· E−1

= E ·

 λ3·10
8

1 . . . 0
...

. . .
...

0 . . . λ3·10
8

n

 · E−1,

which we can find by performing simply n exponentiations and then multiplying together
three matrices (each of which takes about 2n2 many operations, as noted before.) So, we’ve
reduced 6n3 · 108 many operations to about 6n3 + n-many operations; an improvement by
a factor of almost 108! This is a serious algorithmic improvement; for example, suppose
you took a program whose run time was about three years, and improved its run time by a
factor of 108. Your program will now run in under a second.

Furthermore, we can use diagonalization to find roots of matrices, something that oth-
erwise we don’t really have any well-established methods to *do*. For example, suppose
that we had a matrix A, and we wanted to find A1/2 : i.e. a matrix such that when you
multiply it by itself, you get A.

In general, this is really hard! However, if A is diagonalizable as E ·

 λ1 . . . 0
...

. . .
...

0 . . . λn

 ·
E−1, we can easily express A1/2 as

E ·

 λ
1/2
1 . . . 0
...

. . .
...

0 . . . λ
1/2
n ,

 · E−1.

(It bears noting that this will sometimes give you a matrix with complex entries, in the
cases that you’re finding even roots and your matrix has negative eigenvalues.)

3



4 Diagonalization: A Carefully Worked Example

To illustrate how we use these methods, let’s work an example!

Example. Find A301, A302 and A1/301, for

A =

 3 4 −2
−4 −5 2
−4 −4 1

 .

Solution. As suggested by our discussion above, multiplying A by itself 301 times in a row
might be a bit tedious. So let’s try to diagonalize A! By our theorems, this means we want
to do the following:

1. First, we want to find all of A’s eigenvalues.

2. Then, for each of these eigenvalues, we want to find a basis for their corresponding
eigenspaces.

3. How many vectors did we find in the above step? If the answer is the dimension of A
(in this case 3, as A in our example is a 3×3 matrix), then we can apply our theorems

to write A = E ·

 λ1 . . . 0
...

. . .
...

0 . . . λn,

 · E−1, where λ1 . . . λn are A’s eigenvalues and

E =

 | | |
e1 e2 . . . en
| | |

 is the matrix made out of the eigenvectors we found in

step (2).

4. Finally, we can calculate A301 by simply finding A = E ·

 λ3011 . . . 0
...

. . .
...

0 . . . λ301n ,

 ·E−1,

and do a similar calculation to find A1/301.

So: let’s try this! First, to findA’s eigenvalues, we calculate its characteristic polynomial:

pA(λ) = det(λI −A)

= (λ− 3)(λ2 + 4λ+ 3) + 4(4λ+ 4) + 2(−4λ− 4)

= λ3 + λ2 − λ− 1

= (λ+ 1)2(λ− 1).

So A’s two eigenvalues are −1 and 1. What are their associated eigenspaces?
For −1: we know that

E−1 = nullspace (A− (−1)I)

= nullspace

 4 4 −2
−4 −4 2
−4 −4 2

 .
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Because all of the rows of this matrix are constant multiples of the first row, we know that
its rowspace has dimension 1. Therefore, its nullspace has to have dimension 3− 1 = 2; so
it suffices to find two linearly independent vectors e1, e2 such that Aei = 0.

To do this: you can either use the methods in our handout on (row/null)spaces, or
simply notice that in the matrix above,

• the first column minus the second column is the zero vector, as is

• the first column plus two times the third column.

In other words, (A+ I) · (1,−1, 0)T = 0 and (A+ I) · (1, 0, 2)T = 0; therefore, both of these
vectors are in the nullspace of A+ I. These two vectors are linearly independent; therefore,
we know that they form a basis for this nullspace, and thus E−1.

So we just need to find a basis for E1, which is

E−1 = nullspace (A− (1)I)

= nullspace

 2 4 −2
−4 −6 2
−4 −4 0

 .

By inspection, one way to combine the columns in the matrix above to get zero is (−1, 1, 1).
Are there any others?

In fact, up to constant multiples, there aren’t! One way to see this is to calculate the
rank of the matrix A− I ,and see that is is 2; another way to see this is to notice that we’ve
already found a subspace of R3 of dimension 2 that’s made out of eigenvectors for −1, and
therefore there’s at most one more dimension left for the 1-eigenvectors.

After either bit of reasoning, we’re free to conclude that E1 has (−1, 1, 1) as a basis.
So: we’ve found three vectors! Therefore, by our first theorem, these vectors form a

basis for R3, and thus by our second theorem we can write

A =

 −1 1 1
1 −1 0
1 0 2

 ·
 1 0 0

0 −1 0
0 0 −1

 ·
 −1 1 1

1 −1 0
1 0 2

−1

.

5



Consequently, we can write

A301 =

 −1 1 1
1 −1 0
1 0 2

 ·
 1301 0 0

0 (−1)301 0
0 0 (−1)301

 ·
 −1 1 1

1 −1 0
1 0 2

−1

=

 −1 1 1
1 −1 0
1 0 2

 ·
 1 0 0

0 −1 0
0 0 −1

 ·
 −1 1 1

1 −1 0
1 0 2

−1

= A,

A1/301 =

 −1 1 1
1 −1 0
1 0 2

 ·
 11/301 0 0

0 (−1)1/301 0

0 0 (−1)1/301

 ·
 −1 1 1

1 −1 0
1 0 2

−1

=

 −1 1 1
1 −1 0
1 0 2

 ·
 1 0 0

0 −1 0
0 0 −1

 ·
 −1 1 1

1 −1 0
1 0 2

−1

= A, and

A302 =

 −1 1 1
1 −1 0
1 0 2

 ·
 1302 0 0

0 (−1)302 0
0 0 (−1)302

 ·
 −1 1 1

1 −1 0
1 0 2

−1

=

 −1 1 1
1 −1 0
1 0 2

 ·
 1 0 0

0 1 0
0 0 1

 ·
 −1 1 1

1 −1 0
1 0 2

−1

= EIE−1 = EE−1 = I.

As you may have guessed, the properties above aren’t specific to the numbers 301 and
302: A raised to any odd power is itself, and A raised to any even power is the identity
matrix! Furthermore, the only property we used about A to conclude this was that A had
n eigenvalues that were all ±1; for any such matrix, we’ve just proven that it is in fact
orthogonal! Cool, right?

5 Diagonalization: Can It Always Be Done?

One cautionary remark to make is that not every matrix can be diagonalized. For example,
the n× n matrix 

1 1 0 0 . . . 0
0 1 1 0 . . . 0
0 0 1 1 . . . 0
...

...
...

. . .
. . .

...
0 0 0 . . . 1 1
0 0 0 . . . 0 1
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has 1 as its only eigenvalue and (0, . . . 0, x) as its only eigenvectors. As we clearly cannot
span Rn with such vectors whenever n > 1, we cannot apply either of our theorems to
diagonalize this matrix. (As it turns out, it’s not just that our methods are lacking; there is
in fact no way to diagonalize this matrix at all! We call such matrices defective matrices.)
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