Math 1b
\quad Recitation 7: Diagonalization!

Week 7
TA: Padraic Bartlett
Recitation 7: Diagonalization!
Caltech 2011

1 Random Question

Suppose you have a square S and nine lines $l_{1}, \ldots l_{9}$, such that each line divides S into a pair of quadrilaterals, so that the ratio formed by the areas of these quadrilaterals is 2:3.

Show that there must be three of these lines that meet at a common point.

2 Homework comments

- Section average: $70 / 80$, or about 87.5%. This is roughly identical/slightly higher than the course average.
- People did really really well! Pretty much the main source of points lost here wasn't people failing to understand anything; rather, it was just people not attaching their (Mathematica/Wolfram Alpha/Matlab/Maple/Hex) code ${ }^{1}$! So, I'm pretty pleased.

3 Diagonalization: Theorems, Definitions, and Motivations

To start off, we restate the two theorems we use in diagonalizing matrices, and review all of our relevant definitions (including, say, just what diagonalization is.)

Theorem 1 If A is a $n \times n$ matrix with distinct eigenvalues $\lambda_{1}, \ldots \lambda_{k}$, such that

$$
\sum_{i=1}^{k} \text { geometric multiplicity }\left(\lambda_{i}\right)=n
$$

then we can find a basis for \mathbb{R}^{n} made entirely out of vectors which are eigenvectors for A. (As an aside: the geometric multiplicity of an eigenvalue is the dimension of the eigenspace associated to λ_{i}. Equivalently, it is the largest number of linearly independent vectors you can find that are all eigenvectors for A, with λ_{i} as their eigenvalue.)

[^0]Furthermore, if $\left\{\mathbf{v}_{i, j}\right\}_{j=1}^{n_{i}}$ is a basis for the eigenspace of λ_{i}, for every i, we can explicitly write out our basis for \mathbb{R}^{n} as the following union:

$$
\text { eigenvector basis for } \mathbb{R}^{n}:=\bigcup_{i=1}^{k}\left(\bigcup_{j=1}^{n_{i}} \mathbf{v}_{i, j}\right)
$$

The above theorem is kind of an odd thing: when would we want to find such a basis? What would we do with it?

The answer to the above questions, in a word, is diagonalization! and in a theorem, is our next result:

Theorem 2 Suppose that A is a $n \times n$ matrix such that we can find a basis $\left\{\mathbf{e}_{1}, \ldots \mathbf{e}_{n}\right\}$ for \mathbb{R}^{n} made out of A 's eigenvectors. (In other words, suppose that A is a matrix to which we can apply our above theorem!)

Then A is diagonalizable! Specifically, there is an invertible matrix

$$
E=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{e}_{1} & \mathbf{e}_{2} & \ldots & \mathbf{e}_{n} \\
\mid & \mid & & \mid
\end{array}\right)
$$

made out of the eigenvectors $\mathbf{e}_{1}, \ldots \mathbf{e}_{n}$, such that such that

$$
E^{-1} A E=\left(\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \ldots & 0 \\
0 & \lambda_{2} & 0 & \ldots & 0 \\
0 & 0 & \lambda_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \lambda_{n}
\end{array}\right),
$$

where the numbers $\lambda_{1}, \ldots \lambda_{n}$ are the eigenvalues corresponding to the eigenvectors $\mathbf{e}_{1}, \ldots \mathbf{e}_{n}$.
So: why would we ever want to do this? Well, one excellent application is for taking powers of matrices! For example, suppose we have a $n \times n$ matrix A, and we want to find what happens to A when we raise it to some power - say, $3 \cdot 10^{8}$. How can we calculate this?

Well, one (naïve) way to try this is just to perform matrix multiplication. How many operations will this take?

Well: whenever we multiply two matrices, to find the entry in the (i, j)-th spot we have to multiply the i-th row with the j-th column. This will require us to perform $2 n-1$ operations: n operations to multiply the relevant matrix entries together, and $n-1$ more operations to add them all up. Our matrix is a $n \times n$ grid, so we'll have to perform the above process n^{2} many times per pair of matrices multipled; and we're performing $3 \cdot 10^{8}-1$ many such instances of matrix multiplication.

So, in total, we're performing about

$$
6 n^{3} \cdot 10^{8}
$$

many operations to find $A^{3 \cdot 10^{8}}$, which for many reasonable values of n will quickly become massive and fairly intractible.

However, suppose furthermore that we know A is diagonalizable: i.e. there is a matrix E such that $E^{-1} A E=\left(\begin{array}{ccc}\lambda_{1} & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \lambda_{n}\end{array}\right)$. Then, by solving for A in the equality above, we can write

$$
\begin{aligned}
(A)^{3 \cdot 10^{8}} & =\left(E \cdot\left(\begin{array}{ccc}
\lambda_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \lambda_{n}
\end{array}\right) \cdot E^{-1}\right)^{3 \cdot 10^{8}} \\
& =E \cdot\left(\begin{array}{ccc}
\lambda_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \lambda_{n}
\end{array}\right) \cdot E^{-1} \cdot\left(\begin{array}{ccc}
\lambda_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \lambda_{n}
\end{array}\right) \cdot E^{-1} \cdot E \ldots \\
& =E \cdot\left(\begin{array}{ccc}
\lambda_{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \lambda_{n}
\end{array}\right) \cdot E^{-1} \\
& =E \cdot\left(\begin{array}{ccc}
\lambda_{1}^{3 \cdot 10^{8}} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \lambda_{n}^{3 \cdot 10^{8}}
\end{array}\right) \cdot E^{-1},
\end{aligned}
$$

which we can find by performing simply n exponentiations and then multiplying together three matrices (each of which takes about $2 n^{2}$ many operations, as noted before.) So, we've reduced $6 n^{3} \cdot 10^{8}$ many operations to about $6 n^{3}+n$-many operations; an improvement by a factor of almost 10^{8} ! This is a serious algorithmic improvement; for example, suppose you took a program whose run time was about three years, and improved its run time by a factor of 10^{8}. Your program will now run in under a second.

Furthermore, we can use diagonalization to find roots of matrices, something that otherwise we don't really have any well-established methods to *do*. For example, suppose that we had a matrix A, and we wanted to find $A^{1 / 2}$: i.e. a matrix such that when you multiply it by itself, you get A.

In general, this is really hard! However, if A is diagonalizable as $E \cdot\left(\begin{array}{ccc}\lambda_{1} & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \lambda_{n}\end{array}\right)$. E^{-1}, we can easily express $A^{1 / 2}$ as

$$
E \cdot\left(\begin{array}{ccc}
\lambda_{1}^{1 / 2} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \lambda_{n}^{1 / 2},
\end{array}\right) \cdot E^{-1}
$$

(It bears noting that this will sometimes give you a matrix with complex entries, in the cases that you're finding even roots and your matrix has negative eigenvalues.)

4 Diagonalization: A Carefully Worked Example

To illustrate how we use these methods, let's work an example!
Example. Find A^{301}, A^{302} and $A^{1 / 301}$, for

$$
A=\left(\begin{array}{ccc}
3 & 4 & -2 \\
-4 & -5 & 2 \\
-4 & -4 & 1
\end{array}\right)
$$

Solution. As suggested by our discussion above, multiplying A by itself 301 times in a row might be a bit tedious. So let's try to diagonalize A ! By our theorems, this means we want to do the following:

1. First, we want to find all of A 's eigenvalues.
2. Then, for each of these eigenvalues, we want to find a basis for their corresponding eigenspaces.
3. How many vectors did we find in the above step? If the answer is the dimension of A (in this case 3 , as A in our example is a 3×3 matrix), then we can apply our theorems to write $A=E \cdot\left(\begin{array}{ccc}\lambda_{1} & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \lambda_{n},\end{array}\right) \cdot E^{-1}$, where $\lambda_{1} \ldots \lambda_{n}$ are A 's eigenvalues and $E=\left(\begin{array}{cccc}\mid & \mid & & \mid \\ \mathbf{e}_{1} & \mathbf{e}_{2} & \ldots & \mathbf{e}_{n} \\ \mid & \mid & & \mid\end{array}\right)$ is the matrix made out of the eigenvectors we found in step (2).
4. Finally, we can calculate A^{301} by simply finding $A=E \cdot\left(\begin{array}{ccc}\lambda_{1}^{301} & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \lambda_{n}^{301},\end{array}\right) \cdot E^{-1}$, and do a similar calculation to find $A^{1 / 301}$.
So: let's try this! First, to find A 's eigenvalues, we calculate its characteristic polynomial:

$$
\begin{aligned}
p_{A}(\lambda) & =\operatorname{det}(\lambda I-A) \\
& =(\lambda-3)\left(\lambda^{2}+4 \lambda+3\right)+4(4 \lambda+4)+2(-4 \lambda-4) \\
& =\lambda^{3}+\lambda^{2}-\lambda-1 \\
& =(\lambda+1)^{2}(\lambda-1) .
\end{aligned}
$$

So A 's two eigenvalues are -1 and 1 . What are their associated eigenspaces?
For -1 : we know that

$$
\begin{aligned}
E_{-1} & =\text { nullspace }(A-(-1) I) \\
& =\text { nullspace }\left(\begin{array}{ccc}
4 & 4 & -2 \\
-4 & -4 & 2 \\
-4 & -4 & 2
\end{array}\right) .
\end{aligned}
$$

Because all of the rows of this matrix are constant multiples of the first row, we know that its rowspace has dimension 1 . Therefore, its nullspace has to have dimension $3-1=2$; so it suffices to find two linearly independent vectors $\mathbf{e}_{1}, \mathbf{e}_{2}$ such that $A \mathbf{e}_{i}=0$.

To do this: you can either use the methods in our handout on (row/null)spaces, or simply notice that in the matrix above,

- the first column minus the second column is the zero vector, as is
- the first column plus two times the third column.

In other words, $(A+I) \cdot(1,-1,0)^{T}=\mathbf{0}$ and $(A+I) \cdot(1,0,2)^{T}=\mathbf{0}$; therefore, both of these vectors are in the nullspace of $A+I$. These two vectors are linearly independent; therefore, we know that they form a basis for this nullspace, and thus E_{-1}.

So we just need to find a basis for E_{1}, which is

$$
\begin{aligned}
E_{-1} & =\text { nullspace }(A-(1) I) \\
& =\text { nullspace }\left(\begin{array}{ccc}
2 & 4 & -2 \\
-4 & -6 & 2 \\
-4 & -4 & 0
\end{array}\right) .
\end{aligned}
$$

By inspection, one way to combine the columns in the matrix above to get zero is $(-1,1,1)$. Are there any others?

In fact, up to constant multiples, there aren't! One way to see this is to calculate the rank of the matrix $A-I$, and see that is is 2 ; another way to see this is to notice that we've already found a subspace of R^{3} of dimension 2 that's made out of eigenvectors for -1 , and therefore there's at most one more dimension left for the 1 -eigenvectors.

After either bit of reasoning, we're free to conclude that E_{1} has $(-1,1,1)$ as a basis.
So: we've found three vectors! Therefore, by our first theorem, these vectors form a basis for \mathbb{R}^{3}, and thus by our second theorem we can write

$$
A=\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & 2
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \cdot\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & 2
\end{array}\right)^{-1}
$$

Consequently, we can write

$$
\begin{aligned}
A^{301} & =\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & 2
\end{array}\right) \cdot\left(\begin{array}{ccc}
1^{301} & 0 & 0 \\
0 & (-1)^{301} & 0 \\
0 & 0 & (-1)^{301}
\end{array}\right) \cdot\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & 2
\end{array}\right)^{-1} \\
& =\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & 2
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \cdot\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & 2
\end{array}\right)^{-1} \\
& =A, \\
A^{1 / 301} & =\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & 2
\end{array}\right) \cdot\left(\begin{array}{ccc}
1^{1 / 301} & 0 & 0 \\
0 & (-1)^{1 / 301} & 0 \\
0 & 0 & (-1)^{1 / 301}
\end{array}\right) \cdot\left(\begin{array}{cc}
-1 & 1 \\
1 & -1 \\
1 & 0 \\
1 & 0
\end{array}\right)^{-1} \\
& =\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & 2
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \cdot\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & 2
\end{array}\right)^{-1} \\
& =A, \text { and } \\
A^{302} & =\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & 2
\end{array}\right) \cdot\left(\begin{array}{ccc}
7^{302} & 0 \\
0 & (-1)^{302} & \left.\begin{array}{cc}
0 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & 2
\end{array}\right)^{-1} \\
& =\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & 2
\end{array}\right) \cdot\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & 2
\end{array}\right)
\end{array}{ }^{-1}\right. \\
& =E I E^{-1}=E E^{-1}=I .
\end{aligned}
$$

As you may have guessed, the properties above aren't specific to the numbers 301 and 302: A raised to any odd power is itself, and A raised to any even power is the identity matrix! Furthermore, the only property we used about A to conclude this was that A had n eigenvalues that were all ± 1; for any such matrix, we've just proven that it is in fact orthogonal! Cool, right?

5 Diagonalization: Can It Always Be Done?

One cautionary remark to make is that not every matrix can be diagonalized. For example, the $n \times n$ matrix

$$
\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 1 \\
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right)
$$

has 1 as its only eigenvalue and $(0, \ldots 0, x)$ as its only eigenvectors. As we clearly cannot span \mathbb{R}^{n} with such vectors whenever $n>1$, we cannot apply either of our theorems to diagonalize this matrix. (As it turns out, it's not just that our methods are lacking; there is in fact no way to diagonalize this matrix at all! We call such matrices defective matrices.)

[^0]: ${ }^{1}$ Relatedly: ATTACH YOUR CODE.

