
Math 1b TA: Padraic Bartlett

Recitation 6: Eigenthings

Week 6 Caltech 2011

1 Random Question

Show that the following are equal1:

1. The number of ways to divide a regular n+2-gon into triangles, by connecting vertices
with straight lines.

2. The number of ways to go from (0, 0) to (n, n) on the integer lattice, via only walking
north or east, so that you never go above the diagonal line y = x.

2 Midterm comments

• Section average: 70%.

• Basically, people semi-universally got questions 1/3/4 (the “calculational” questions)
and had a lot of difficulty with 2/5 (the “proof” questions.) So, in terms of absorbing
the Math 1b material, I’m not too concerned; most of the errors were either logical
(not understanding “if and only if” statements; getting tripped up with how to even
*parse* question 5) or just people being flustered.

1Pictures from Wikipedia’s page on the Catalan numbers.
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That the proofs are as rocky as they are, to be clear, *is* a concern; to fix this, we’re
going to try to do some more careful proofs in rec (whenever there’s time?) and try
to talk more about the “how” of proofs in office hours; after a week or two, if things
haven’t improved, we may try something more radical to prepare you all for the final.
Honestly, I’m pretty happy with your collective performance thus far through the
course! – I just want to make sure that we make it through the end intact. Relatedly:
if you’d like different things in rec, tell me! I can adapt to student preferences.

• If you’re concerned about your performance through the course thus far, please feel
free to contact me! I can tell you how you’re doing with respect to your peers, give
you feedback as to what you can improve, set you up with tutoring or additional office
hours, or just tell you you’re doing absolutely fine (as the situation warrants.)

3 Eigenthings: Definitions

Definition. For a matrix A and vector x, scalar λ, we say that λ is an eigenvalue for A
and x is a eigenvector for A if and only if

Ax = λx.

Equivalently, we can say the same things about λ and x if and only if

(λ · I −A)x = 0,

something that we can see by simply subtracting Ax from both sides of our first equation.
Based on this observation, we can see that λ is an eigenvalue forA if and only if det(λI−A) =
0.

Motivated by this, we define the characteristic polynomial of A as the polynomial

pA(λ) = det(λI −A),

which we think of as a polynomial with variable given by λ.
Finally, for any eigenvalue λ, we can define the eigenspace Eλ associated to λ as the

space

Eλ =: {v ∈ V : Av = λv}.

It bears noting that (using similar arguments to the ones above,) for any eigenvalue λ,
we can also define

Eλ =: nullspace(λI −A).

4 Eigenthings: Two Examples

We calculate two examples here, one along the computational/trivial end of the spectrum,
and one more along the more conceptual/proof-based end of things:
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Example. For A =

(
1 1
0 2

)
, find all of A’s eigenvectors, eigenvalues, and associated

eigenspaces.

Solution. We start by finding A’s eigenvalues; from there, we can find the eigenspaces
attached to each eigenvalue, and thereby have found all of A’s eigenvectors.

To do this, we simply examine

det(λI −A) = det

((
λ 0
0 λ

)
−
(

1 1
0 2

))
= det

((
λ− 1 −1

0 λ− 2

))
= (λ− 1)(λ− 2).

This polynomial has λ = 1, 2 as its two roots; thus, 1 and 2 are our two eigenvalues.
We now proceed to find E1 and E2:

E1 = nullspace(1 · I −A)

= nullspace

((
0 −1
0 −1

))
.

What vectors are such that

(
0 −1
0 −1

)
· (x, y)T = 0? Well, ones such that

0 · x+ (−1) · y = 0, and

0 · x+ (−1) · y = 0;

i.e. vectors of the form (x, 0). So E1 = {(x, 0) : x ∈ R}.
Similarly, we can find E2 in the same way, by first noting that

E2 = nullspace(2 · I −A)

= nullspace

((
1 −1
0 0

))
,

which corresponds to the set of vectors (x, y)T such that

1 · x+ (−1) · y = 0, and

0 · x+ 0 · y = 0.

This forces our vectors to be of the form (x, x), and thus implies that E2 = {(x, x) : x ∈ R}.
This characterizes all of A’s eigenvectors, values, and spaces.
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Example. For an odd positive integer n, show that the only eigenvectors of the n × n
matrix

A =



0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 1 0 . . . 0
0 0 0 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 1
1 0 0 0 0 . . . 0


are of the form (x, x . . . x),, where x is any real number.

Proof. So, this example seems a lot trickier than the one we just did – it’s some sort of
crazy n× n matrix, instead of a nice manageable 2× 2 matrix! Yet, as it turns out, we can
still solve this problem by just using the same methods that we used earlier, with just a bit
more patience and cunning.

Specifically; to find the eigenvectors of A, we first want to find all of the possible
eigenvalues of A: i.e. all of the values of λ such that det(λI −A) is 0.

We start by first examining the matrix (λI −A) itself:

λI −A =



λ −1 0 0 0 . . . 0 0
0 λ −1 0 0 . . . 0 0
0 0 λ −1 0 . . . 0 0
0 0 0 λ −1 . . . 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 . . . λ −1
−1 0 0 0 0 . . . 0 λ


Expanding the determinant of this looks messy; while there are only two nonzero terms
on the top row, the resulting matrix gets kind of weird when you delete only the second
column and first row. So, to calculate the determinant of λI −A, we will instead calculate
the determinant of its *transpose*.

Why would we want to do that? Well, as it turns out, the determinant of the transpose
is a lot easier to calculate, as expanding the determinant along its first row results in the
sum of two determiants of triangular matrices, and we know that the determinant of a
triangular matrix is just the product of its diagonal entries!
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Explicitly, we have

det(λI −A) = det((λI −A)T )

= det



λ 0 0 0 0 . . . 0 −1
−1 λ 0 0 0 . . . 0 0
0 −1 λ 0 0 . . . 0 0
0 0 −1 λ 0 . . . 0 0
0 0 0 −1 λ . . . 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 . . . −1 λ



= λ · det



λ 0 0 0 . . . 0 0
−1 λ 0 0 . . . 0 0
0 −1 λ 0 . . . 0 0
0 0 −1 λ . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −1 λ


− 0 + . . .+ 0

+ (−1)n−1 · (−1) · det



−1 λ 0 0 0 . . . 0
0 −1 λ 0 0 . . . 0
0 0 −1 λ 0 . . . 0
0 0 0 −1 λ . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . −1


,

where the (−1)n−1 above comes from the definition of the determinant (i.e. because
det(A) =

∑n
i=1(−1)ia1i det(A1i).) So, again, if we recall that the determinant of a tri-

angular matrix is just the product of the entries along the diagonal2, we have that

det(λI −A) = λ · λn−1 + (−1)n−1 · (−1) · (−1)n−1

= λn + (−1)2n−1

= λn − 1.

If n is odd, this only has one real-valued solution: λ = 1. If n is even, this has exactly two
real-valued solutions: λ = 1 and λ = −1.

So; in the case that n is odd, let’s classify E1, which (as 1 is the only eigenvalue) will
tell us what all of A’s eigenvectors are.

2if you don’t remember this proof from the notes/class, it’s easy to do by induction! Specifically, it’s
trivially true for a 1 × 1 matrix: now, start with a lower-triangular matrix, and look at its first row: one
nonzero entry and the rest are zeroes. expand along that row, and apply your inductive hypothesis! For
upper-triangular: use the fact that det(AT ) = det(A),, and the result you just proved for lower-triangular
matrices!
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By definition,

E1 = nullspace (I −A)

=



1 −1 0 0 0 . . . 0 0
0 1 −1 0 0 . . . 0 0
0 0 1 −1 0 . . . 0 0
0 0 0 1 −1 . . . 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 . . . 1 −1
−1 0 0 0 0 . . . 0 1


.

We *can* use our established methods for finding general nullspaces to find the nullspace
of this matrix; but it’s kind of obnoxious and not as clear. Instead, to find the nullspace of
this matrix, we can make the following two observations:

• If you add up the first n − 1 rows of our matrix, you get the last row of our matrix.
Therefore, the nullspace of I −A is at least 1-dimensional.

• If you take any nontrivial3 linear combination of the first n − 1 rows of our matrix,
you do not get zero, as the 1-part of the earliest row we pick can’t be cancelled out
by any of the other rows. (Think about this for a second if you don’t believe it.)

Therefore, the nullspace of our matrix is at most n− (n− 1) = 1-dimensional.

• If we multiply the vector (x, x, . . . x)T on the right by A, we just get (x, x, . . . x) back;
therefore, this vector is in the nullspace of I −A.

So: we’ve shown that the nullspace of I − A is one-dimensional and contains the vector
(x, x . . . , x),for any real value x: therefore, it *is* made of those vectors. In other words,
we’ve shown that

E1 = {(x, x, . . . , x) : x ∈ R};

thus, every eigenvector of A is of this form.

For fun: what happens when n is even? Do you get any new eigenvectors?

3A linear combination
∑

aixi of some collection of xi’s is called nontrivial if at least one of the coefficients
ai is nonzero.
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