
Math 1b TA: Padraic Bartlett

Recitation 2: Nonnegative Solutions and Dependence

Week 2 Caltech 2011

1 Random Question

For any n ∈ N, can you find a matrix M such that

• Mn = 0, the all-zeros matrix, but

• Mk 6= 0, for any 1 ≤ k ≤ n?

(By Mn, we simply mean the matrix acquired by multiplying M by itself n times.)

2 HW comments

• Section average: 90%.

• As the above indicates, people did pretty well! The only thing I’d mention is that,
in general, try to show more of your work! If the total body of your work on a
question is just a matrix, it’s very difficult to tell *why* your answer is what it is: in
particular, if you make a mistake, it becomes impossible to tell the difference between
just forgetting a sign early in your calculations (a minor mistake) and flat-out not
having any idea how to attack the question at all (a larger problem.) So write more!

3 Nonnegative Solutions to Systems of Linear Equations

Last week, we outlined how to find solutions x to the system

Ax = b.

Today, we’re going to explore a refinement to the above question: specifically, suppose we
want to find solutions to the system Ax = b where the vector x is made up of *nonnegative*
solutions? Can we do this?

In fact, we can! Specifically, we have the following algorithm:

1. We start with a matrix M = (A|b), that corresponds to our system of linear equations
as follows:

a11y1 + . . . a1nyn = b1
a21y1 + . . . a2nyn = b2

...
. . .

...
...

am1y1 + . . . amnyn = bm

 −→


a11 . . . a1n b1
a21 . . . a2n b2
...

. . .
...

...
am1 . . . amn bm

 = M

1



2. Now, take this matrix M and via row operations, manipulate it so that the A-portion
of M is in reduced row-echelon form. Call this reduced matrix M ′. Check to make sure
that this system of equations is consistent (as otherwise, there aren’t any solutions at
all!)

3. Now, examine the b-column in M ′. There are three possibilities:

(a) All of the entries in b are nonnegative. In this situation, you’ve found a nonneg-
ative solution, by setting all of the free variables in our system of equations to 0
(as this forces the fixed variables to take their values from the values in b.)

(b) There is an entry bk in b that is negative, but there are no other negative entries
in the k-th row of M ′. In this case, because the k-th row of our matrix represents
the equation

a′k1y1 + . . . 1′knyn = bk,

we know that (because all of the akj ’s are positive and the entry bk is negative)
one of the yj ’s has to be negative for this equation to hold – i.e. any solution
to our system must have a negative entry in it. So no nonnegative solution is
possible.

(c) There is an entry bk in b that is negative, and also an entry akj in the same
row as bk that’s negative. If this holds, pivot at akj and repeat step (3) again.
(Sometimes, you will have multiple choices for akj . If this happens, just make
sure that pick your pivot entries so that you’re not getting into a “loop” – i.e.
continually repeating the same set of three pivots again and again and again.)

Proving that this algorithm will always terminate in a finite number of steps is not a
terribly tricky thing to do: try it if you have time! (Or ask me; I can prove it in office hours
pretty easily.)

Instead, let’s run the algorithm twice, so we can see how it works in practice:

Example. Does the system of equations represented by the matrix 1 2 3 2
0 2 6 4
1 1 0 0


have a nonnegative solution?

Proof. So: let’s run our algorithm. First, we put the matrix above into reduced row-echelon
form, by first pivoting at (1,1):  1 2 3 2

0 2 6 4
0 −1 −3 −2

 ,

2



and then at (2,2):  1 0 −3 −2
0 1 3 2
0 0 0 0

 .

Now that we’re in reduced row-echelon form, we look at the b-column. The last column
has a negative entry at b1. Thus, we now look at the first row: is there a negative entry in
it? As it turns out, there is, at (1,3) – so, let’s pivot there! −1/3 0 1 2/3

1 1 0 0
0 0 0 0

 .

The b-column of this matrix is now nonnegative – so there is a basic nonnegative solution!
Specifically, if we let the free variable (x) be 0, we can then see that the fixed variables y
and z are forced to be 0 and 2/3 respectively, and thus that we have (0, 0, 2/3) as a basic
nonnegative solution to our system.

Example. Does the system of equations represented by the matrix(
3 1 4 1 5
9 2 6 5 3

)
have a nonnegative solution?

Proof. Again, let’s run our algorithm. First, we put the matrix above into reduced row-
echelon form, by first pivoting at (1,1):(

1 1/3 4/3 1/3 5/3
0 −1 −6 2 −12

)
,

and then at (2,2): (
1 0 −2/3 1 −7/3
0 1 6 −2 12

)
.

Again, now that we’re in reduced row-echelon form, we look at the b-column. The last
column has a negative entry at b1; so we again look at the first row. Because (1, 3) has a
negative value in it, we pivot there:(

−3/2 0 1 −3/2 7/2
9 1 0 7 −9

)
.

Again, there is a negative entry in the b-column of the above matrix – but in the corre-
sponding row of our matrix, there aren’t any other negative entries! Therefore, we know
that there are no nonnegative solutions to our system.
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4 Dependence

In linear algebra, there are a number of concepts of “dependence.” We list two common
ones here:

Definition. Linear dependence: A collection v1 . . . vk of vectors is called linearly de-
pendent iff there are k constants a1 . . . ak, not all identically 0, such that

k∑
i=1

aivi = 0.

Definition. Affine dependence: A collection v1 . . . vk of vectors is called affinely de-
pendent iff there are k constants a1 . . . ak, not all identically 0, such that

k∑
i=1

aivi = 0,

and

k∑
i=1

ai = 0.

Along with those two definitions, we have a pair of theorems to tell us when a collection
of vectors is either linearly or affinely dependent:

Theorem 1 Suppose that you have a collection of vectors v1 . . . vk, and you use them to
create the matrix

A =


. . . v1 . . .
. . . v2 . . .

...
. . . vk . . .


by taking the vectors v1 . . . vk as the rows of A. Then, this collection v1 . . . vk of vectors is
linearly dependent if and only if the reduced echelon form of the matrix A has a zero row in
it.

The proof of this theorem was provided in class (I believe; if not, prove it!) Similarly,
on HW#2, you’re asked to prove a theorem that tells you when a collection of vectors is
affinely dependent:

Theorem 2 A collection of vectors v1 . . . vk is affinely dependent iff the collection of vectors
v2 − v1, v3 − v1, . . . vn − v1 is linearly dependent.
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