
Math 1b TA: Padraic Bartlett

Recitation 10: Reflections, Isometries, SVD’s, and Pseudoinverses

Week 10 Caltech 2011

1 Random Question

Can you find a 20070201 × 20070201 matrix with all of its entries either equal to 0 or 1,
such that its determinant is 2?

2 Homework comments

• Average: roughly 86.5%, which was a few points above the class average. Good job!

• Comments: The only thing I want to say is that when you’re diagonalizing a symmetric
matrix A with an orthogonal matrix E, make sure to normalize the columns of
E! Otherwise, you don’t have an orthogonal matrix; this made it so that when people
calculated ETAE, they didn’t get D as expected.

So: as you may have noticed from lecture / the notes online: class went insane in the
last week! Specifically, we’ve covered the concepts of isometry, reflections, singular value
decompositions, pseudoinverses, and all of their applications in like three lectures, which is
kind-of crazy. But not too crazy for you all to not own the concepts on the final! In this
recitation, we’re going to review the basics about reflections and isometries; this, coupled
with the final review’s notes on SVD’s and pseudoinverses, should set you up nicely. (For
those of you who were at this recitation; I’ve moved the SVD discussion we did in class to
the final review notes, because otherwise I’d just be repeating the same thing twice.)

3 Isometries and Reflections: Definitions

So: what *is* an isometry, anyways?

Definition. Isometry: A isometry is a map f : Rn → Rn that preserves distances: i.e.
for any x,y ∈ Rn,, we have

||x− y|| = ||f(x)− f(y)||

Intutively, we think of isometries of ways of moving space around that doesn’t “bend”
it in any key ways – they’re maps that preserve distances, and thus don’t accidentally fold
two points closer to each other.

We’ve worked with several examples of isometries – rotations, for one, are a common
choice of isometry. Another map that is an isometry is the reflection map, which we’ve
defined before but will restate here:
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Definition. Reflection: For a subspace U of Rn, we define the reflection map through
U as the linear map

ReflU (x) = x− 2 · projU⊥(x).

One question we can ask here (that we ask about pretty much everything we study in
this course) is the following: how can we describe this process via matrices? In other
words:

Question 1 For any subspace U ⊆ Rn, what is the matrix RU such that for any vector
x ∈ Rn, RU · x = ReflU (x)?

Solution. As it turns out, yes! We outline the construction of such “reflection matrices”
below.

Suppose we have some subspace U of Rn, of dimension k ≤ n. Choose a basis {u1, . . .uk}
s for U . As well, notice that the subspace U⊥ has dimension n − k, and choose a basis
{w1, . . .wn−k} for U⊥.

Now, look at what ReflU (x) does to each of these basis elements. We know that ReflU (x)
fixes each of the ui’s, because reflecting through the subspace U fixes all of the elements
in U . As well, we know that ReflU (x) sends each of the wi’s to −wi’s, because reflecting
through U sends elements in U⊥ to their additive inverses, by definition.

But what does this mean? Well, that U is a map with

• 1 as an eigenvalue of geometric multiplicity k, with eigenvectors{u1, . . .uk}, and

• −1 as an eigenvalue of geometric multiplicity n− k, with eigenvectors{w1, . . .wn−k}.

But this means we’ve found n linearly independent eigenvectors for U ! So, we can reverse-
engineer our diagonalization process we discovered earlier, to notice that the matrix RU

given by the product

 | | | |
u1 . . . uk w1 . . . wn−k
| | | |

 ·


1
. . .

1
−1

. . .

−1


·

 | | | |
u1 . . . uk w1 . . . wn−k
| | | |

−1

has precisely the same eigenvalues and eigenvectors as the ReflU map. Therefore, because
we can write any vector in Rn as a sum of these eigenvectors (because we found n of these
eigenvectors and they’re all linearly independent⇒ they form a basis for Rn), we know that
because ReflU and RU have the same eigenvectors/eigenvalues, they must send the same
vectors to the same places. Therefore, they are the same map!

Therefore, we can express any reflection map as the product RU of matrices above.

The details of the proof above aren’t too important; more useful is the result of the
theorem above, which gives us an explicit way to write down any reflection as a matrix. We
give an example of this below:
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Question 2 Find the 2×2 matrices for reflection through the line x = y, and for reflection
through the line y = 0. What is the product of these two matrices?

Solution. We use our results and methods above. Specifically, let’s start with the matrix
that’s reflection through the line x = y. To phrase the question differently, this is reflection
through the subspace U = {(x, y) : x = y}, the orthogonal complement of which is the
subspace U⊥ = {(x, y) : x = −y}. (To see this, you can either use the definition that the
orthogonal complement U⊥ consists of all vectors that are orthogonal to U , or the geometric
definition that in R2, the orthogonal complement to a line through (0, 0) is the line through
(0, 0) that’s perpindicular to it.)

As U is one-dimensional, a basis for it is just any element in U ; for example {(1, 1}.
Similarly, as U⊥ is one-dimensional, we can give its basis as {(1,−1)} without any work.
Then, by our work earlier, we can write

R1
U =

(
1 1
1 −1

)
·
(

1 0
0 −1

)
·
(

1 1
1 −1

)−1
=

(
1 1
1 −1

)
·
(

1 0
0 −1

)
·
(

1/2 1/2
1/2 −1/2

)
=

(
1 1
1 −1

)
·
(

1/2 1/2
−1/2 1/2

)
=

(
0 1
1 0

)
.

Similarly, to find the matrix for reflection through the line x = 0, we can write U =
{(x, y) : x = 0}, U⊥ = {(x, y), y = 0}, pick {(0, 1)} to be a basis for U and {(1, 0)} to be a
basis for U⊥, and write

R2
U =

(
0 1
1 0

)
·
(

1 0
0 −1

)
·
(

0 1
1 0

)−1
=

(
−1 0
0 1

)
.

So, if we take the product of these matrices, we get

R2
U ·R1

U =

(
−1 0
0 1

)
·
(

0 1
1 0

)
=

(
0 −1
1 0

)
,

which (on inspection) is the matrix corresponding to counterclockwise rotation by π/2
around the origin.

If you check this geometrically, this should make sense; on paper, flipping through the
line x = y and then through the line x = 0 should yield the π/2 rotation we got. Check it
for yourself!
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