SQUARE ROOTS OF MATRICES, GRAPHS, AND ADJACENCY
MATRICES

TA: PADRAIC BARTLETT

1. RANDOM QUESTION

Question 1.1. Can you place 4 points in the plane such that any two points are
an odd distance apart?

2. Last WEEK’S HW

Average was about 90/100 — consequently, there wasn’t much to really talk about.
Most students seemed to be comfortable with the basic concepts; however, there
was some confusion in notation that ran rampant through the sets. Specifically,
when many students talked about a collection of eigenvectors that spanned a space,
they would write the collection of vectors as a single matrix: while I understood
what you were talking about and refrained from deducting points, this is incorrect
(as a matrix, technically speaking, isn’t spanning anything.) In the future / on
the final!, make sure you don’t do this, and write a collection of vectors as, well,

01 2
a collection of vectors (i.e. {((0,1,2),(1,2,3),(2,2,2)),n0t | 1 2 3 |.)
2 2 2

3. SQUARE ROOTS OF MATRICES

So: when we study numbers, we are often interested in finding solutions to
equations like

(3.1) "=y

for given y — i.e. finding n-th roots of numbers. As mathematicians, we are inter-
ested in doing something similar for matrices — i.e. finding conditions under which
we can find matrices B such that

(3.2) Br=A4

for some given matrix A. We think of such matrices as n-th roots of A, and we know
from class/the online notes posted by Wilson that such roots exist whenever A is
a positive semdefinite matrix. In case you've forgotten, we repeat the definition
of positive semdefinite below:

Definition 3.3. We say that a n x n matrix A is positive semdefinite if for any
real n-dimensional vector z,

(3.4) T Ax > 0.
1
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A nice consequence of being positive semidefinite is that the matrix A is diagonal-
izable: i.e. that there is an invertible matrix E formed out of A’s eigenvectors and
a diagonal matrix D made of A’s eigenvalues such that

(3.5) A=EDE™!,
and furthermore that the values in the diagonal matrix are all positive.

Given this, we can easily calculate a n-th root for A by setting

(3.6) B=EVYDE™,

as

(3.7) B"=E(VD)'"E"'=EDE"'=A
VAi ... 0

where the n-th root of D is just , the coordinate-wise root
0 ... VY

of D.

So: to illustrate the general method, we work an example below:

Question 3.8. What is the square root of

A= ( —53//22 _5?}/22 )?

Proof. So: we begin by first noting that such a matrix is positive definite, as
5/2  —3/2 5x1/2 — 3x2/2
T _.T 1 2 e 270 2

x < —3/2 52 ) r=zx ( 3wy /%20)2 ) T 5x{/2 — 3xoxy + 515/2
=5/2(23 + 23 — 62911 /5)
=5/2((x1 — 22)* + 4x371 /5) > 0,

because |(x1 — x2)?| > |x172| > 4/5|x125] for all z.

Given this, we know that we can diagonalize A and write it in the form EDE~!,
where F is a matrix corresponding to the eignvectors of A and D is the diagonal
matrix made out of eigenvalues.

So: it suffices to simply find the eigenvalues/vectors and construct these matrices!
To find the eigenvalues, simply note that

~(5/2—-1 =3/2 - 3/2  —=3/2
A-(MI= ( -3/2 5/2-1 ) - ( -3/2  3/2
is singular and has null space spanned by (1,1), and

- (Tt )= (5 38)

is singular and has null space spanned by (—1,1).
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So the eigenvalues are 1 and 4 and have corresponding orthonormal eigenvectors

(1/v/2,1/v2), (=1/3/2,1/\/2); so we get that

_(UV2 V2 . .
E = ( V3 1/\/5 = the 45-degree rotation matrix,

E7l = ( 11//\(% Zg ) = the -45-degree rotation matrix,

o=(49).
and A= EDE™";
SO we can write
VA= EVDE™.
Double-checking to make sure that this method works gives us
G ot - (U4 ) (3 ) (4

~(ire 2 ) (e i)

(3 ).

So, it works! O

4. ADJACENCY MATRICES

Definition 4.1. So: given any n x n probability matrix
A ={ay;},
we can form the adjacency graph (Va, E4) to A by defining

e the collection of vertices, V', to be some enumerated set of points {1,2...n},
and

e the collection of edges, F, to be the collection of all ordered pairs (n,m)
such that a,,, is nonzero. (note that this is backwards from what you might
normally write — this is because of the column-stochastic thing versus the
row-stochastic thing.)

An example graph would be

1000 1
011 10
A=|l0 10 1 0|,
00000
10010

which would have corresponding graph

1/v2
1/v2

)
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So: note the following really useful fact:

Proposition 4.2. For a matriz A with adjacency graph (Va,E4), there is a path
of length k from the point m to the point n iff the entry in the n-th row and m-th
column of A* is nonzero. Put another way, if an entry an ., in the matriz A* is
nonzero, there is a path of length k from m to n.

Proof. The proof for this is relatively basic, and goes by induction. The base case
is trivial, as A! corresponds precisely to paths of length 1 in the adjacency graph;
so suppose it holds for A™. Then, simply write

AL = A7 A,

and note that the n, m-th entry pf the matrix A”*! is nonzero if the dot product
of the n-th row and m-th column is nonzero. This holds if and only if there is a k
such that the n, k-th entry in A™ is nonzero and the k, m-th entry in A is nonzero:
by inductive hypothesis, this means that there is a path of length n from k& to n
and a path of length 1 from m to k. Composing gives a path of length n + 1 from
n to m; so we are done! |

This can be used to characterize strongly connected graphs nicely — specifically,
a strongly-connected graph must have that for every pair m,n there is a power of
k such that the n, m-th entry of A* is nonzero, as strongly connected graphs must
have paths from any node to any other node.



