SQUARE ROOTS OF MATRICES, GRAPHS, AND ADJACENCY MATRICES

TA: PADRAIC BARTLETT

1. Random Question

Question 1.1. Can you place 4 points in the plane such that any two points are an odd distance apart?

2. Last Week's HW

Average was about 90/100 - consequently, there wasn't much to really talk about. Most students seemed to be comfortable with the basic concepts; however, there was some confusion in notation that ran rampant through the sets. Specifically, when many students talked about a collection of eigenvectors that spanned a space, they would write the collection of vectors as a single matrix: while I understood what you were talking about and refrained from deducting points, this is incorrect (as a matrix, technically speaking, isn't spanning anything.) In the future / on the final!, make sure you don't do this, and write a collection of vectors as, well, a collection of vectors (i.e. $\langle(0,1,2),(1,2,3),(2,2,2)\rangle$, not $\left(\begin{array}{ccc}0 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 2 & 2\end{array}\right)$.)

3. Square Roots of Matrices

So: when we study numbers, we are often interested in finding solutions to equations like

$$
\begin{equation*}
x^{n}=y \tag{3.1}
\end{equation*}
$$

for given y - i.e. finding n-th roots of numbers. As mathematicians, we are interested in doing something similar for matrices - i.e. finding conditions under which we can find matrices B such that

$$
\begin{equation*}
B^{n}=A \tag{3.2}
\end{equation*}
$$

for some given matrix A. We think of such matrices as n-th roots of A, and we know from class/the online notes posted by Wilson that such roots exist whenever A is a positive semdefinite matrix. In case you've forgotten, we repeat the definition of positive semdefinite below:

Definition 3.3. We say that a $n \times n$ matrix A is positive semdefinite if for any real n-dimensional vector x,

$$
\begin{gather*}
x^{T} A x \geq 0 . \tag{3.4}\\
1
\end{gather*}
$$

A nice consequence of being positive semidefinite is that the matrix A is diagonalizable: i.e. that there is an invertible matrix E formed out of A 's eigenvectors and a diagonal matrix D made of A 's eigenvalues such that

$$
\begin{equation*}
A=E D E^{-1} \tag{3.5}
\end{equation*}
$$

and furthermore that the values in the diagonal matrix are all positive.
Given this, we can easily calculate a n-th root for A by setting

$$
\begin{equation*}
B=E \sqrt[n]{D} E^{-1} \tag{3.6}
\end{equation*}
$$

as

$$
\begin{equation*}
B^{n}=E(\sqrt[n]{D})^{n} E^{-1}=E D E^{-1}=A \tag{3.7}
\end{equation*}
$$

where the n-th root of D is just $\left(\begin{array}{ccc}\sqrt[n]{\lambda_{i}} & \ldots & 0 \\ \vdots & \ddots & \\ 0 & \ldots & \sqrt[n]{\lambda_{n}}\end{array}\right)$, the coördinate-wise root of D.

So: to illustrate the general method, we work an example below:
Question 3.8. What is the square root of

$$
A=\left(\begin{array}{cc}
5 / 2 & -3 / 2 \\
-3 / 2 & 5 / 2
\end{array}\right) ?
$$

Proof. So: we begin by first noting that such a matrix is positive definite, as

$$
\begin{aligned}
x^{T}\left(\begin{array}{cc}
5 / 2 & -3 / 2 \\
-3 / 2 & 5 / 2
\end{array}\right) x=x^{T}\binom{5 x_{1} / 2-3 x_{2} / 2}{-3 x_{1} / 25 x_{2} / 2} & =5 x_{1}^{2} / 2-3 x_{2} x_{1}+5 x_{2}^{2} / 2 \\
& =5 / 2\left(x_{1}^{2}+x_{2}^{2}-6 x_{2} x_{1} / 5\right) \\
& =5 / 2\left(\left(x_{1}-x_{2}\right)^{2}+4 x_{2} x_{1} / 5\right) \geq 0
\end{aligned}
$$

because $\left|\left(x_{1}-x_{2}\right)^{2}\right| \geq\left|x_{1} x_{2}\right| \geq 4 / 5\left|x_{1} x_{2}\right|$ for all x.
Given this, we know that we can diagonalize A and write it in the form $E D E^{-1}$, where E is a matrix corresponding to the eignvectors of A and D is the diagonal matrix made out of eigenvalues.

So: it suffices to simply find the eigenvalues/vectors and construct these matrices! To find the eigenvalues, simply note that

$$
A-(1) I=\left(\begin{array}{cc}
5 / 2-1 & -3 / 2 \\
-3 / 2 & 5 / 2-1
\end{array}\right)=\left(\begin{array}{cc}
3 / 2 & -3 / 2 \\
-3 / 2 & 3 / 2
\end{array}\right)
$$

is singular and has null space spanned by $(1,1)$, and

$$
A-(4) I=\left(\begin{array}{cc}
5 / 2-4 & -3 / 2 \\
-3 / 2 & 5 / 2-4
\end{array}\right)=\left(\begin{array}{cc}
-3 / 2 & -3 / 2 \\
-3 / 2 & -3 / 2
\end{array}\right)
$$

is singular and has null space spanned by $(-1,1)$.

So the eigenvalues are 1 and 4 and have corresponding orthonormal eigenvectors $(1 / \sqrt{2}, 1 / \sqrt{2}),(-1 / \sqrt{2}, 1 / \sqrt{2})$; so we get that

$$
\begin{gathered}
E=\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)=\text { the } 45 \text {-degree rotation matrix } \\
E^{-1}=\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)=\text { the }-45 \text {-degree rotation matrix, } \\
D=\left(\begin{array}{cc}
1 & 0 \\
0 & 4
\end{array}\right) \\
\text { and } A=E D E^{-1}
\end{gathered}
$$

so we can write

$$
\sqrt{A}=E \sqrt{D} E^{-1}
$$

Double-checking to make sure that this method works gives us

$$
\begin{aligned}
\sqrt{A}^{2}=\left(E \sqrt{D} E^{-1}\right)^{2}=E(\sqrt{D})^{2} E^{-1} & =\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 4
\end{array}\right)\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-4 / \sqrt{2} & 4 / \sqrt{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
5 / 2 & -3 / 2 \\
-3 / 2 & 5 / 2
\end{array}\right) .
\end{aligned}
$$

So, it works!

4. Adjacency Matrices

Definition 4.1. So: given any $n \times n$ probability matrix

$$
A=\left\{a_{i j}\right\}
$$

we can form the adjacency graph $\left(V_{A}, E_{A}\right)$ to A by defining

- the collection of vertices, V, to be some enumerated set of points $\{1,2 \ldots n\}$, and
- the collection of edges, E, to be the collection of all ordered pairs (n, m) such that $a_{m n}$ is nonzero. (note that this is backwards from what you might normally write - this is because of the column-stochastic thing versus the row-stochastic thing.)

An example graph would be

$$
A=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0
\end{array}\right)
$$

which would have corresponding graph

So: note the following really useful fact:
Proposition 4.2. For a matrix A with adjacency graph $\left(V_{A}, E_{A}\right)$, there is a path of length k from the point m to the point n iff the entry in the n-th row and m-th column of A^{k} is nonzero. Put another way, if an entry $a_{n, m}$ in the matrix A^{k} is nonzero, there is a path of length k from m to n.

Proof. The proof for this is relatively basic, and goes by induction. The base case is trivial, as A^{1} corresponds precisely to paths of length 1 in the adjacency graph; so suppose it holds for A^{n}. Then, simply write

$$
A^{n+1}=A^{n} \cdot A
$$

and note that the n, m-th entry pf the matrix A^{n+1} is nonzero if the dot product of the n-th row and m-th column is nonzero. This holds if and only if there is a k such that the n, k-th entry in A^{n} is nonzero and the k, m-th entry in A is nonzero: by inductive hypothesis, this means that there is a path of length n from k to n and a path of length 1 from m to k. Composing gives a path of length $n+1$ from n to m; so we are done!

This can be used to characterize strongly connected graphs nicely - specifically, a strongly-connected graph must have that for every pair m, n there is a power of k such that the n, m-th entry of A^{k} is nonzero, as strongly connected graphs must have paths from any node to any other node.

