
SQUARE ROOTS OF MATRICES, GRAPHS, AND ADJACENCY
MATRICES

TA: PADRAIC BARTLETT

1. Random Question

Question 1.1. Can you place 4 points in the plane such that any two points are
an odd distance apart?

2. Last Week’s HW

Average was about 90/100 – consequently, there wasn’t much to really talk about.
Most students seemed to be comfortable with the basic concepts; however, there
was some confusion in notation that ran rampant through the sets. Specifically,
when many students talked about a collection of eigenvectors that spanned a space,
they would write the collection of vectors as a single matrix: while I understood
what you were talking about and refrained from deducting points, this is incorrect
(as a matrix, technically speaking, isn’t spanning anything.) In the future / on
the final!, make sure you don’t do this, and write a collection of vectors as, well,

a collection of vectors (i.e. 〈(0, 1, 2), (1, 2, 3), (2, 2, 2)〉, not

 0 1 2
1 2 3
2 2 2

.)

3. Square Roots of Matrices

So: when we study numbers, we are often interested in finding solutions to
equations like

(3.1) xn = y

for given y – i.e. finding n-th roots of numbers. As mathematicians, we are inter-
ested in doing something similar for matrices – i.e. finding conditions under which
we can find matrices B such that

(3.2) Bn = A

for some given matrix A. We think of such matrices as n-th roots of A, and we know
from class/the online notes posted by Wilson that such roots exist whenever A is
a positive semdefinite matrix. In case you’ve forgotten, we repeat the definition
of positive semdefinite below:

Definition 3.3. We say that a n×n matrix A is positive semdefinite if for any
real n-dimensional vector x,

(3.4) xTAx ≥ 0.
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A nice consequence of being positive semidefinite is that the matrix A is diagonal-
izable: i.e. that there is an invertible matrix E formed out of A’s eigenvectors and
a diagonal matrix D made of A’s eigenvalues such that

(3.5) A = EDE−1,

and furthermore that the values in the diagonal matrix are all positive.

Given this, we can easily calculate a n-th root for A by setting

(3.6) B = E
n
√
DE−1,

as

(3.7) Bn = E( n
√
D)nE−1 = EDE−1 = A

where the n-th root of D is just


n
√
λi . . . 0
...

. . .
0 . . . n

√
λn

, the coördinate-wise root

of D.
So: to illustrate the general method, we work an example below:

Question 3.8. What is the square root of

A =
(

5/2 −3/2
−3/2 5/2

)
?

Proof. So: we begin by first noting that such a matrix is positive definite, as

xT

(
5/2 −3/2
−3/2 5/2

)
x = xT

(
5x1/2− 3x2/2
−3x1/25x2/2

)
= 5x2

1/2− 3x2x1 + 5x2
2/2

= 5/2(x2
1 + x2

2 − 6x2x1/5)

= 5/2((x1 − x2)2 + 4x2x1/5) ≥ 0,

because |(x1 − x2)2| ≥ |x1x2| ≥ 4/5|x1x2| for all x.
Given this, we know that we can diagonalize A and write it in the form EDE−1,

where E is a matrix corresponding to the eignvectors of A and D is the diagonal
matrix made out of eigenvalues.

So: it suffices to simply find the eigenvalues/vectors and construct these matrices!
To find the eigenvalues, simply note that

A− (1)I =
(

5/2− 1 −3/2
−3/2 5/2− 1

)
=
(

3/2 −3/2
−3/2 3/2

)
is singular and has null space spanned by (1, 1), and

A− (4)I =
(

5/2− 4 −3/2
−3/2 5/2− 4

)
=
(
−3/2 −3/2
−3/2 −3/2

)
is singular and has null space spanned by (−1, 1).
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So the eigenvalues are 1 and 4 and have corresponding orthonormal eigenvectors
(1/
√

2, 1/
√

2), (−1/
√

2, 1/
√

2); so we get that

E =
(

1/
√

2 −1/
√

2
1/
√

2 1/
√

2

)
= the 45-degree rotation matrix,

E−1 =
(

1/
√

2 1/
√

2
−1/
√

2 1/
√

2

)
= the -45-degree rotation matrix,

D =
(

1 0
0 4

)
,

and A = EDE−1;

so we can write
√
A = E

√
DE−1.

Double-checking to make sure that this method works gives us

√
A

2
= (E

√
DE−1)2 = E(

√
D)2E−1 =

(
1/
√

2 −1/
√

2
1/
√

2 1/
√

2

)(
1 0
0 4

)(
1/
√

2 1/
√

2
−1/
√

2 1/
√

2

)
=
(

1/
√

2 −1/
√

2
1/
√

2 1/
√

2

)(
1/
√

2 1/
√

2
−4/
√

2 4/
√

2

)
=
(

5/2 −3/2
−3/2 5/2

)
.

So, it works! �

4. Adjacency Matrices

Definition 4.1. So: given any n× n probability matrix

A = {aij},

we can form the adjacency graph (VA, EA) to A by defining

• the collection of vertices, V , to be some enumerated set of points {1, 2 . . . n},
and

• the collection of edges, E, to be the collection of all ordered pairs (n,m)
such that amn is nonzero. (note that this is backwards from what you might
normally write – this is because of the column-stochastic thing versus the
row-stochastic thing.)

An example graph would be

A =


1 0 0 0 1
0 1 1 1 0
0 1 0 1 0
0 0 0 0 0
1 0 0 1 0

 ,

which would have corresponding graph
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So: note the following really useful fact:

Proposition 4.2. For a matrix A with adjacency graph (VA, EA), there is a path
of length k from the point m to the point n iff the entry in the n-th row and m-th
column of Ak is nonzero. Put another way, if an entry an,m in the matrix Ak is
nonzero, there is a path of length k from m to n.

Proof. The proof for this is relatively basic, and goes by induction. The base case
is trivial, as A1 corresponds precisely to paths of length 1 in the adjacency graph;
so suppose it holds for An. Then, simply write

An+1 = An ·A,
and note that the n,m-th entry pf the matrix An+1 is nonzero if the dot product
of the n-th row and m-th column is nonzero. This holds if and only if there is a k
such that the n, k-th entry in An is nonzero and the k,m-th entry in A is nonzero:
by inductive hypothesis, this means that there is a path of length n from k to n
and a path of length 1 from m to k. Composing gives a path of length n+ 1 from
n to m; so we are done! �

This can be used to characterize strongly connected graphs nicely – specifically,
a strongly-connected graph must have that for every pair m,n there is a power of
k such that the n,m-th entry of Ak is nonzero, as strongly connected graphs must
have paths from any node to any other node.


