# EIGENVALUES AND PROBABILITY MATRICES 

MATH 1B - NOTES, WK. 8

## 1. Last Week's HW

The average was about a 62 ; things were mostly solid, but the eigenspace/value question was a little shaky. As a result, I wanted to review a worked example of how to find eigenvalues for some of the notes here: if you're comfortable with this, feel free to skip the next section.

## 2. Eigenvalues

Question 2.1. What are the eigenvalues and eigenspaces of the $n \times n$ matrix

$$
M=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 \\
\vdots & & & \ddots & \ddots & \\
0 & \ldots & & \ldots & 0 & 1 \\
1 & \ldots & & \ldots & 0 & 0
\end{array}\right) ?
$$

So: we begin by calculating the characteristic polynomial of $M$, $\operatorname{det}(M-\lambda I)$ : specifically, this is the determinant of the matrix

$$
M-\lambda I=M^{\prime}=\left(\begin{array}{rrrrrr}
-\lambda & 1 & 0 & 0 & \ldots & 0 \\
0 & -\lambda & 1 & 0 & \ldots & 0 \\
0 & 0 & -\lambda & 1 & \ldots & 0 \\
\vdots & & & \ddots & \ddots & \\
0 & \ldots & & \ldots & -\lambda & 1 \\
1 & \ldots & & \ldots & 0 & -\lambda
\end{array}\right)
$$

So: how do we do this? First, recall that we can define the determinant recursively by expanding along a column of our matrix: i.e. that

$$
\operatorname{det}\left(M^{\prime}\right)=\sum_{i=1}^{n}(-1)^{n-1} m_{i 1} \operatorname{det}\left(M_{i 1}^{\prime}\right)
$$

where $M=\left\{m_{i j}\right\}_{i, j=1}^{n}$, and $M_{i j}^{\prime}$ is the matrix formed by removing the $j^{t h}$ row and the $i^{\text {th }}$ column from $M^{\prime}$.

So: specifically, for our matrix $M^{\prime}$, we have that (because the first two entries in its leftmost column are the only nonzero entries) that

$$
\begin{aligned}
\operatorname{det}\left(M^{\prime}\right) & =m_{11} \operatorname{det}\left(M_{11}\right)-m_{n 1} \operatorname{det}\left(M_{n 1}\right) \\
& =-\lambda \cdot\left|\begin{array}{rrrr}
1 & 0 & \ldots & 0 \\
-\lambda & 1 & \ldots & 0 \\
\vdots & & \ddots & \\
0 & \ldots & -\lambda & 1
\end{array}\right|(-1)^{n-1} \cdot\left|\begin{array}{rrll}
-\lambda & 1 & \ldots & 0 \\
0 & -\lambda & \ldots & 0 \\
\vdots & & \ddots & \\
0 & \ldots & \ldots & -\lambda
\end{array}\right| \\
& =(-\lambda)^{n}+(-1)^{n-1},
\end{aligned}
$$

where the two determinant calculations of $M_{11}$ and $M_{n 1}$ are made trivial by noting that they are upper-triangular and lower triangular matrices. (h/t: A. Craig)

So: we then have that this is equal to 0 whenever

$$
(-\lambda)^{n}=(-1)^{n} ;
$$

specifically, when $n$ is even we have that this holds whenever $\lambda$ is a $n$-th root of unity (i.e. $\lambda=e^{2 i \pi \cdot k / n}$ ) and whenever $n$ is odd we have that this holds whenever $\lambda$ is a $n$-th root of unity times $e^{2 \pi i / 2 n}$.

So, we have then that the only real eigenvalues are
(1) $\pm 1$, if $n$ is even,
(2) 1 , if $n$ is odd.

To find the eigenspaces for these eigenvalues: note simply that because (for $n$ even or odd)
$M-(1) I=M^{\prime}=\left(\begin{array}{rrrrrr}-1 & 1 & 0 & 0 & \ldots & 0 \\ 0 & -1 & 1 & 0 & \ldots & 0 \\ 0 & 0 & -1 & 1 & \ldots & 0 \\ \vdots & & & \ddots & \ddots & \\ 0 & \ldots & & \ldots & -1 & 1 \\ 1 & \ldots & & \ldots & 0 & -1\end{array}\right) \sim_{R}\left(\begin{array}{rrrrrr}-1 & 1 & 0 & 0 & \ldots & 0 \\ 0 & -1 & 1 & 0 & \ldots & 0 \\ 0 & 0 & -1 & 1 & \ldots & 0 \\ \vdots & & & \ddots & \ddots & \\ 0 & \ldots & & \ldots & -1 & 1 \\ 0 & \ldots & & \ldots & 0 & -0\end{array}\right)$
by adding every row to the last row; as this is an upper-triangular matrix with a 0 -row appended at its base, we can easily see that the rank of this matrix is $n-1$ and thus that the corresponding eigenspace for $M$ is of rank 1 , for $n$ either odd or even.

As well, for $n$ even, we have that
$M-(-1) I=M^{\prime}=\left(\begin{array}{rrrrrr}1 & 1 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & 1 & \ldots & 0 \\ \vdots & & & \ddots & \ddots & \\ 0 & \ldots & & \ldots & 1 & 1 \\ 1 & \ldots & & \ldots & 0 & 1\end{array}\right) \sim_{R}\left(\begin{array}{rrrrrr}1 & 1 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & 1 & \ldots & 0 \\ \vdots & & & \ddots & \ddots & \\ 0 & \ldots & & \ldots & 1 & 1 \\ 0 & \ldots & & \ldots & 0 & -0\end{array}\right)$
by alternately adding and subtracting rows from the last row (everything cancels because $n$ is even!) As before, this matrix has rank $n-1$, and thus the eigenspace associated to -1 for $n$ even has rank 1 .

So in either case it suffices to find just one eigenvector, as it must consequently span the eigenspace. So, consider

$$
x_{1}=\left(\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
\vdots \\
1 \\
1
\end{array}\right), x_{2}=\left(\begin{array}{r}
1 \\
-1 \\
1 \\
-1 \\
\vdots \\
1 \\
-1
\end{array}\right)
$$

Under $M, x_{1}$ gets taken to $x_{1}$ regardless of $n$ being even, and if $n$ is even $x_{2}$ gets taken to $-x_{2}$. So we've completely characterized the eigenvalues and spaces of this matrix! yay.

## 3. Probability Matrices

So: What are probability matrices?
Suppose you have a object (say, a student at Caltech,) and suppose you have a finite list of states the object can enter: say,
(1) Working
(2) Sleeping
(3) Building Giant Robots of Doom ("Fun").

Then suppose that objects move between these states with certain set probabilities: i.e. that a Caltech student who is asleep has, say, a $\% 60$ chance of starting work, a $\% 20$ chance of starting work on a giant robot, and a $\% 20$ chance of staying asleep.


We can then form a (left-stochastic, or column-stochastic) probability matrix $P$ corresponding to these values, where we set $p_{i j}$ to be the probability that a object in state $j$ enters state $i$. (Note that this is backwards from the intuitive way in which you'd do this; i.e. I'd naively have thought that $p_{i j}$ would be the probability that a object in state $i$ enters state $j$. This would give you a row-stochastic/right-stochastic matrix, in which the rows would add to 1 , as opposed to Wilson's definition, which ensures that the columns add to 1 . Note also that your book defines probability matrices as row-stochastic matrices, so be careful in interpreting theorems from it and applying them to your HW.)

$$
P=\left(\begin{array}{lll}
.7 & .6 & .7 \\
.1 & .2 & .1 \\
.2 & .2 & .2
\end{array}\right)
$$

In general, we can define a (left-stochastic) probability matrix as any matrix in which the columns all sum to 1 and all of the entries are $\geq 0$, without making use
of actual examples and probabilities - but the study and use of them is interesting because of this connection.

Specifically, probability matrices have several special properties:
(1) Any probability matrix has 1 as an eigenvalue.
(2) If all of the entries of a probability matrix are nonzero, then the dimension of the eigenspace for the eigenvalue 1 is 1 ; i.e. there is precisely one vector $v$ (up to multiplying by a scalar) such that $P v=v$. We call this vector a stable vector for $P$ - you can think of this as a state which is stable under iterating the states according to the matrix $P$.
(3) All eigenvalues of a probability matrix are $\leq 1$ - you will show this on your HW this week!
We will prove some of these properties about such matrices next week.

