
EIGENVALUES AND PROBABILITY MATRICES

MATH 1B - NOTES, WK. 8

1. Last Week’s HW

The average was about a 62; things were mostly solid, but the eigenspace/value
question was a little shaky. As a result, I wanted to review a worked example of
how to find eigenvalues for some of the notes here: if you’re comfortable with this,
feel free to skip the next section.

2. Eigenvalues

Question 2.1. What are the eigenvalues and eigenspaces of the n× n matrix

M =



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

. . . . . .
0 . . . . . . 0 1
1 . . . . . . 0 0


?

So: we begin by calculating the characteristic polynomial of M , det(M − λI):
specifically, this is the determinant of the matrix

M − λI = M ′ =



−λ 1 0 0 . . . 0
0 −λ 1 0 . . . 0
0 0 −λ 1 . . . 0
...

. . . . . .
0 . . . . . . −λ 1
1 . . . . . . 0 −λ


So: how do we do this? First, recall that we can define the determinant recur-

sively by expanding along a column of our matrix: i.e. that

det(M ′) =
n∑

i=1

(−1)n−1mi1 det(M ′
i1),

where M = {mij}n
i,j=1, and M ′

ij is the matrix formed by removing the jth row and
the ith column from M ′.

So: specifically, for our matrix M ′, we have that (because the first two entries
in its leftmost column are the only nonzero entries) that

1
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det(M ′) = m11 det(M11)−mn1 det(Mn1)

= −λ ·

∣∣∣∣∣∣∣∣∣
1 0 . . . 0

−λ 1 . . . 0
...

. . .
0 . . . −λ 1

∣∣∣∣∣∣∣∣∣ (−1)n−1 ·

∣∣∣∣∣∣∣∣∣
−λ 1 . . . 0

0 −λ . . . 0
...

. . .
0 . . . . . . −λ

∣∣∣∣∣∣∣∣∣
= (−λ)n + (−1)n−1,

where the two determinant calculations of M11 and Mn1 are made trivial by noting
that they are upper-triangular and lower triangular matrices. (h/t: A. Craig)

So: we then have that this is equal to 0 whenever

(−λ)n = (−1)n;

specifically, when n is even we have that this holds whenever λ is a n-th root of
unity (i.e. λ = e2iπ·k/n) and whenever n is odd we have that this holds whenever λ
is a n-th root of unity times e2πi/2n.

So, we have then that the only real eigenvalues are

(1) ±1, if n is even,
(2) 1, if n is odd.

To find the eigenspaces for these eigenvalues: note simply that because (for n
even or odd)

M−(1)I = M ′ =



−1 1 0 0 . . . 0
0 −1 1 0 . . . 0
0 0 −1 1 . . . 0
...

. . . . . .
0 . . . . . . −1 1
1 . . . . . . 0 −1


∼R



−1 1 0 0 . . . 0
0 −1 1 0 . . . 0
0 0 −1 1 . . . 0
...

. . . . . .
0 . . . . . . −1 1
0 . . . . . . 0 −0


by adding every row to the last row; as this is an upper-triangular matrix with a
0-row appended at its base, we can easily see that the rank of this matrix is n− 1
and thus that the corresponding eigenspace for M is of rank 1, for n either odd or
even.

As well, for n even, we have that

M−(−1)I = M ′ =



1 1 0 0 . . . 0
0 1 1 0 . . . 0
0 0 1 1 . . . 0
...

. . . . . .
0 . . . . . . 1 1
1 . . . . . . 0 1


∼R



1 1 0 0 . . . 0
0 1 1 0 . . . 0
0 0 1 1 . . . 0
...

. . . . . .
0 . . . . . . 1 1
0 . . . . . . 0 −0


by alternately adding and subtracting rows from the last row (everything cancels
because n is even!) As before, this matrix has rank n− 1, and thus the eigenspace
associated to −1 for n even has rank 1.
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So in either case it suffices to find just one eigenvector, as it must consequently
span the eigenspace. So, consider

x1 =



1
1
1
1
...
1
1


, x2 =



1
−1

1
−1

...
1

−1


Under M , x1 gets taken to x1 regardless of n being even, and if n is even x2 gets

taken to −x2. So we’ve completely characterized the eigenvalues and spaces of this
matrix! yay.

3. Probability Matrices

So: What are probability matrices?
Suppose you have a object (say, a student at Caltech,) and suppose you have a

finite list of states the object can enter: say,
(1) Working
(2) Sleeping
(3) Building Giant Robots of Doom (“Fun”).

Then suppose that objects move between these states with certain set probabil-
ities: i.e. that a Caltech student who is asleep has, say, a %60 chance of starting
work, a %20 chance of starting work on a giant robot, and a %20 chance of staying
asleep.
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We can then form a (left-stochastic, or column-stochastic) probability matrix
P corresponding to these values, where we set pij to be the probability that a
object in state j enters state i. (Note that this is backwards from the intuitive
way in which you’d do this; i.e. I’d naively have thought that pij would be the
probability that a object in state i enters state j. This would give you a row-
stochastic/right-stochastic matrix, in which the rows would add to 1, as opposed
to Wilson’s definition, which ensures that the columns add to 1. Note also that
your book defines probability matrices as row-stochastic matrices, so be careful in
interpreting theorems from it and applying them to your HW.)

P =

 .7 .6 .7
.1 .2 .1
.2 .2 .2


In general, we can define a (left-stochastic) probability matrix as any matrix in

which the columns all sum to 1 and all of the entries are ≥ 0, without making use
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of actual examples and probabilities – but the study and use of them is interesting
because of this connection.

Specifically, probability matrices have several special properties:
(1) Any probability matrix has 1 as an eigenvalue.
(2) If all of the entries of a probability matrix are nonzero, then the dimension

of the eigenspace for the eigenvalue 1 is 1; i.e. there is precisely one vector
v (up to multiplying by a scalar) such that Pv = v. We call this vector
a stable vector for P – you can think of this as a state which is stable
under iterating the states according to the matrix P .

(3) All eigenvalues of a probability matrix are ≤ 1 – you will show this on your
HW this week!

We will prove some of these properties about such matrices next week.


