
MIDTERM REVIEW TOPICS

TA: PADRAIC BARTLETT - MATH 1B, WK. 6

1. Random Questions

Question 1.1. So: Suppose you have a Z × Z grid of squares. Consider the fol-
lowing game we can play on this board:

• We start by putting one coin on every single square below the x-axis.
• If we have two coins in a row with an empty space ahead of them, we can

“jump” one of the coins over the other, as depicted below.
How “high” on the y-axis can you get a coin? Can you get one to height 3?

Higher? Why or why not?

So: you appear to all have a midterm this week. Accordingly, these notes will
be mostly review; the opening section is just a list of topics, which is followed by a
series of worked example questions from Prof. Wilson’s review sheet.

2. Overview of Topics

• Row-echelon form: what it is, how to transform matrices into row-echelon
form (pivots!), what it tells you about the matrix (the rank of a matrix is
the number of nonzero rows in its row-echelon form), when two matrices
have the same row-echelon form (when they differ from each other by a
series of elementary matrix operations).
• How to solve systems of linear equations with matrices – in both the ho-

mogenous case and the inhomogeneous case. (refer to the older notes if you
forget how to do this, or to past HW, or your textbook, or come into office
hours, or write me an email, or . . . yes. make sure you can do this!)
• Rank: how to determine it (by putting a matrix into row-echelon form), how

it relates to linear independence (the rank of a matrix is the dimension of
its row space – in other words, a matrix with exactly k linearly independent
rows will have rank k and its row space will be of dimension k.)
• Orthogonality: what it means (a and b are orthogonal if a · b = 0, where

we understand · to be the dot product), and what you can do with it: i.e.
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given a matrix U , you should be able to define U⊥, the null space of U (i.e.
the collection of all vectors perpindicular to U .) As well, you should know
how to use orthogonality to find the area of a parallelogram, and how to
turn a basis into an orthonormal basis via Gram-Schmidt! (We work an
exercise on this later in the notes.)
• Linear independence and convex sets; know what they are (see the old notes

if you forget), and be prepared to show that certain things are linearly
independent/dependent/convex.
• Inverses: know how to find them, and when they exist (an inverse to a

matrix A will exist precisely when the A is a n× n matrix of rank n. Note
that, however, if A is not of this form, this doesn’t mean that there isn’t
a matrix B such that BA = I; these can happen, and we call them either
left or right inverses where they occur. However, such matrices will never
be such that AB = BA = I if A isn’t a n× n matrix of rank n.)

3. Worked examples

Question 3.1. Show that the rank of the matrix below is 7.

A =



7 2 2 2 2 2 2
2 7 2 2 2 2 2
2 2 7 2 2 2 2
2 2 2 7 2 2 2
2 2 2 2 7 2 2
2 2 2 2 2 7 2
2 2 2 2 2 2 7


Proof. So: note that because the rank of a matrix is invariant under elementary
row operations (i.e adding scalar multiples of rows to other rows), we have that the
above matrix has the same rank as the matrix acquired by adding every row to the
first row, 

19 19 19 19 19 19 19
2 7 2 2 2 2 2
2 2 7 2 2 2 2
2 2 2 7 2 2 2
2 2 2 2 7 2 2
2 2 2 2 2 7 2
2 2 2 2 2 2 7

.


Dividing the first row by 19, we have

1 1 1 1 1 1 1
2 7 2 2 2 2 2
2 2 7 2 2 2 2
2 2 2 7 2 2 2
2 2 2 2 7 2 2
2 2 2 2 2 7 2
2 2 2 2 2 2 7

;
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subtracting twice the first row from every other row then yields

1 1 1 1 1 1 1
0 5 0 0 0 0 0
0 0 5 0 0 0 0
0 0 0 5 0 0 0
0 0 0 0 5 0 0
0 0 0 0 0 5 0
0 0 0 0 0 0 5

;


finally, dividing the second through sixth rows by 5 and subtracting them from the
first yields 

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

;


so we thus conclude that the rank of the identity matrix I7 is the same as the rank
of A; i.e. A has rank 7. �

Question 3.2. What is the area of the triangle A in R3 with vertices (1, 0,−1), (0, 1, 1),
and (1, 2, 3)?

Proof. So: pretend for a moment that the only thing you know about triangles
is that sticking a pair of them together will give you a parallelogram, as depicted
below:

A
A

A

Then, to find the area of the triangle A, it suffices to find the area of the parallel-
ogram formed by combining two copies of the triangle A, and divide it by 2! So: to
do this, first translate A by (−1, 0, 1) to the triangle (0, 0, 0), (−1, 1, 2), and (0, 2, 4);
this doesn’t change the area of the original triangle. Then, we have that the paral-
lelogram consisting of the two copies of A is spanned by (0, 2, 4) and (−1, 1, 2); so
we proceed to find the area of this parallelogram via orthogonalization.

I.e.: we set
v1 = (−1, 1, 2),

and by the Gram-Schmidt process set

v2 = (0, 2, 4)− 〈(0, 2, 4), (−1, 1, 2)〉
〈(−1, 1, 2), (−1, 1, 2)〉

·(−1, 1, 2) = (0, 2, 4)−(−10
6

,
10
6

,
20
6

) = (
5
3
,

1
3
,

2
3

).

As a quick check to make sure we didn’t do anything wrong, we note that

v1 · v2 = (−1, 1, 2) · (5
3
,

1
3
,

2
3

) = 0.
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Thus, we have that the area of the parellelogram spanned by (−1, 1, 2) and
(0, 2, 4) is

|v1||v2| =
√

1 + 1 + 4 ·
√

25
9

+
1
9

+
4
9

=
√

20 = 2
√

5;

so the area of our triangle A is
√

5. �

Question 3.3. Show that if U and V are subspaces of Rn and U ⊆ W , then
dim(U) ≤ dim(V ).

Proof. So: Pick a basis v1 . . . vk for U . This, by definition, is a linearly independent
set of vectors in U that spans U .

Because U ⊆W , we know that v1 . . . vk ⊂W , and thus that W contains at least
k linearly independent vectors. Then, two possibilities hold: either

(1) W = 〈v1 . . . vk〉. In this case, we know that because the v1 . . . vk are linearly
independent, that they are a basis for W , and thus that dim(W ) = dim(V ).

(2) W ) 〈v1 . . . vk〉. In this case, we know that there is a vector w1 ∈ W such
that w1 /∈ 〈v1 . . . vk〉; so, look at the set 〈v1 . . . vk, w1〉. Either this set is
all of W or it is still a subset of W . If it is all of W , stop; otherwise,
pick another vector w2 and look at the set 〈v1 . . . vk, w1, w2〉 . . . repeat this
process until you eventually get a set 〈v1 . . . vk, w1 . . . wl〉 that spans W .
This set is linearly independent, by construction (see the proof last week if
you don’t believe this,) spans W , and has more vectors in it than 〈v1 . . . vk〉.

So dim(W ) ≥ dim(V ).
�


