BASIS, DIMENSION AND ORTHOGONALITY

PADRAIC BARTLETT

1. Random Questions

Question 1.1. So: Suppose you have $a \mathbb{N} \times \mathbb{N}$ grid of squares - kind of an infintedimensional chessboard with a lower-right-hand corner, if you will - and consider the following game we can play on our board:

- We start by putting one coin on the square in the bottom-right-hand corner.
- If we have a coin on some square on our board such that the square immediately north of the coin and the square immediately east of the coin are both empty, we can remove the coin from our square and put a new coin to the north and a new coin to the east of this square.
So: Is it possible to clear the region highlighted in green below?

2. Last Week's Homework

Average: about 63. Interesting points about the HW: not really much. As evidenced by the average, people seemed to know what was going on. However, if anything was shaky, or you couldn't read the comments I wrote next to a given problem, feel free (as always!) to contact me and I'll try to clarify things.

3. Basis!

Definition 3.1. So: we define a nonempty set U of vectors to be a space if it is closed under linear combinations (i.e. scalar multiples of elements of U and sums of elements of U are again elements of U).

Definition 3.2. For a space U, a basis of U is a linearly independent set of vectors $\left\{v_{i}\right\}$ that $\operatorname{span} U-$ i.e. $\left\langle v_{i}\right\rangle=U$.
Examples 3.3. \mathbb{R}^{n} has a basis (the standard basis, natch) given by the vectors $e_{i}=(0, \ldots, 1, \ldots, 0)$, where the 1 occurs in the i-th place and all other entries are 0 .

The space of polynomials $R[x]$, where R can be taken to be $\mathbb{Z}, \mathbb{R}, \mathbb{Q}$ or a host of other things (usually, these are at least rings)(if you don't know what a ring is, ignore that comment), has a basis consisting of the polynomials

$$
1, x, x^{2}, x^{3}, x^{4} \ldots
$$

So: given a space, how do we find a basis? The process is very algorithmic (i.e. there's a simple step-by-step approach that constructs it for you) - the proof below illustrates how it goes in general.

Theorem 3.4. Any space $U \subset \mathbb{R}^{n}$ has a basis.
Proof. (This holds for all spaces; but in infinite-dimensional cases it gets tricky, and it's more illuminating to do the case that you're going to work in all the time.)

So: U is a space, and thus nonempty. If U consists solely of the 0 -vector, then U is trivially spanned by the empty set; otherwise, there is a $v_{1} \in U$ such that $v_{1} \neq 0$.

Consider the set $U \backslash\left\langle v_{1}\right\rangle$ (where for two sets $A, B, A \backslash B$ is defined to be the collection of all elements in A that are not elements in B).

Two cases can hold: either
(1) $U \backslash\left\langle v_{1}\right\rangle$ is empty. In this case, halt.
(2) $U \backslash\left\langle v_{1}\right\rangle$ is not empty. In this case, pick some element v_{2} in U that is not 0 and not in $\left\langle v_{1}\right\rangle$.
From here, again, two cases can hold: either
(1) $U \backslash\left\langle v_{1}, v_{2}\right\rangle$ is empty. In this case, halt.
(2) $U \backslash\left\langle v_{1}, v_{2}\right\rangle$ is not empty. In this case, pick some element v_{3} in U that is not 0 and not in $\left\langle v_{1}, v_{2}\right\rangle$.
Repeat this process until at some v_{k} we have that $U \backslash\left\langle v_{1} \ldots v_{k}\right\rangle$ is empty - such a stage exists because the space U is contained in \mathbb{R}^{n}, and thus cannot contain more than n-linearly independent vectors. (question: why is this true?)

So: this collection trivially spans U, as every element in U lies in their span and they are all elements of U. That they are linearly independent is not much harder to see: pick any c_{i} such that

$$
\sum_{i=1}^{k} c_{i} v_{i}=0
$$

Because we picked v_{k} such that it didn't lie in the span of $\left\langle v_{1} \ldots v_{k-1}\right\rangle$, we know that

$$
\sum_{i=1}^{k} c_{i} v_{i}=0 \Leftrightarrow \sum_{i=1}^{k-1} c_{i} v_{i}=-c_{k} v_{k} \Leftrightarrow c_{k}=0
$$

so we have reduced our collection to

$$
\sum_{i=1}^{k-1} c_{i} v_{i}=0
$$

Repeating this process k times gives us that all of the c_{i} are necessarily 0 ; so the v_{i} are linearly independent, and thus are a spanning set!

Example 3.5. The above process works to find basises in concrete settings. Take, for example,

$$
U=\langle(1,2,3),(4,5,6),(7,8,9)\rangle .
$$

U is not empty, so take $v_{1}=(1,2,3) . U \backslash\langle(1,2,3)\rangle$ is also not empty, because the vector $(7,8,9)$ isn't a scalar multiple of $(1,2,3)$; so set $v_{2}=(7,8,9)$.

Then, because

$$
(4,5,6)=\frac{1}{2} \cdot((7,8,9)-(1,2,3))+(1,2,3)
$$

we have that $U \backslash\langle(1,2,3),(7,8,9)\rangle$ is empty; thus, by the reasoning we used in the proof above, $(1,2,3),(7,8,9)$ form a basis for U.

Definition 3.6. A space U has dimension n if it has a basis with n elements. Theorems we will one day prove will show that this is indeed a well-defined concept (i.e. a space can't have basises of two different sizes), and that this concept accords with our intuitive notion of dimension (i.e. dimension 1 is a line, 2 is a plane, 3 is 3 -d space, ...)

4. Orthogonality

Definition 4.1. v_{1} is orthogonal to v_{2} iff $v_{1} \cdot v_{2}=0$. We denote this relation by writing $v_{1} \perp v_{2}$. For spaces U, we define U^{\perp} as the collection of all vectors v such that for all $u \in U, v \perp u$.

Geometrically, the notion of orthogonality coincides with the concept of perpindicularity - i.e. it turns out that

- $v_{1} \cdot v_{2}=\left|v_{1} \| v_{2}\right| \cos (\theta)$, for θ the angle between the two vectors v_{1} and v_{2}, and consequently that
- $v_{1} \perp v_{2}$ iff the angle between them is $\pi / 2$, i.e. 90 degrees.

You won't need this for the HW, but I thought it was cool to know, and maybe will help with your intuition for what's going on here, and why we would even care about orthogonality.

Protip: just as we showed that every space has a basis, it turns out that they can be made to have an orthogonal basis! (i.e. a basis where any two basis vectors are orthogonal to each other.) This is a cool fact, and we'll hopefully do that sometime this quarter - the process is called Gram-Schmidt orthogonalization, and is rather useful in a lot of things.

