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PADRAIC BARTLETT, MA1B TA, WINTER 2009

1. Previous HW

Average was around 90% or so; there were only two things I wanted to stress for
people going into the final.

(1) Always explain *why* something works! When concluding something, don’t
just write down that “the matrix is (blah)” – explain *why* it is (blah).
The methods you use to arrive at your conclusions are far more important
than your ability to multiply two-digit numbers successfully – yet, if you
only write down a simple numeric answer and somewhere along the line a
calculation went wrong, I as a grader cannot tell whether your problem came
from something trivial (and should be penalized lightly) or from something
grievously wrong. Words are your friends!

(2) When answering questions about a probability matrix P with associated
adjacency graph G, several of you invoked relations between the concepts of
G being strongly connected, Pm > 0 for some m, and P’s stable vector
being > 0 that weren’t always quite right. So I just want to clarify that
here:

(∃m Pm > 0)⇔ (P ′s stable vector being > 0)⇒ (G being strongly
connected)

Proof. To see this: note that if Pm is bigger than 0 for some m, then (from
the notes/recitation) we know that there are paths of length m between
any two nodes in G, and thus that G is strongly connected. As well, if Pm

is composed of strictly positive entries, by stringing together the paths of
length m we got above we have paths of length km for any k ∈ N between
any two nodes in G, and thus that P km is > 0 for all k. Then, because
Pm converges to the matrix composed of n copies of P ’s stability vector as
m goes to infinity, we have that P ’s stability vector must be > 0, as Pm

is infintely often composed of strictly positive entries. Finally, note that if
P ’s stability vector is composed of strictly positive numbers, we would have
that eventually Pm must be > 0, as it approaches the matrix composed of
n copies of the stability vector. �

The important thing to take away from this is that

(G being strongly connected) 6⇒ (∃m Pm > 0):

to see an explicit example, take P =
(

0 1
1 0

)
: P has a strongly connected

adjacency matrix, yet Pm is always equal to either P or I, for any m.
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2. Review topics!

So: here is a list of things (I think exhaustive, but don’t hold me to it) that I
think you’ll need for the midterm.

• Characteristic polynomial: For a given matrix M , the polynomial of
one variable x given by det(M − xI).
• Eigenspaces:For a matrix M and an eigenvalue λ ∈ C, the eigenspace

corresponding to λ is the nullspace of (M − λI) : equivalently, it can be
defined as the collection of all vectors v such that Mv = λv.
• Eigenvalues: For a matrix M , eigenvalues are numbers λ ∈ C such that

det(M − λI) = 0; equivalently, numbers λ such that there exist nonzero
vectors v such that Mv = λv.
• Eigenvectors: For a given eigenvalue λ, an eigenvector is a vector in λ’s

associated eigenspace.
• Linear Programming: Know how to do it. Prof. Wilson’s notes online

are (I believe) rather clear and concise on the subject, so I’ll let them stand
as a reference – but if you have any questions, don’t hesitate to contact me
for clarification.
• Matrix, Diagonalizable: A matrix M is diagonalizable if there is an

invertible matrix P and a diagonal matrix E such that we can write M =
PEP−1. Remember that n× n matrices are diagonalizable if and only if a
basis for Rn can be made out of their eigenvectors.

• Matrix, Symmetric: A matrix M is symmetric iff MT = M . Symmetric
matrices have several nice properties: namely, (1) they’re diagonalizable,
(2) two eigenvectors corresponding to different eigenvalues are orthogonal,
and (3) they’re positive-(definite/semidefinite) iff their eigenvalues are all
(> / ≥) than 0.

• Multiplicity, Algebraic: For a matrix M and for a given eigenvalue
λ, the algebraic multiplicity is the exponent n on the term (x − λ) in the
characteristic polynomial of M , after factoring the polynomial into the form
(x− λ)np(x), where p(λ) 6= 0.

• Multiplicity, Geometric: The dimension of the eigenspace corresponding
to λ. Note that the algebraic and geometric multiplicities of eigenvalues can
vary wildly: see HW 6, problem 3 for an example of this.

• Positive-definite/semidefinite: A matrix M is positive-definite iff for
all real-valued vectors x, xTMx > 0; it’s positive-semidefinite if xTMx is
merely ≥ 0 for all such x.

• Matrix, Digraphs associated to a: Know how to form the digraph
associated to a matrix, as covered in week 9; know also the theorem we
proved there that says that the m,n-th entry in P k is > 0 iff there is a path
of length k between the nth and mth nodes in P ’s adjacency graph.

• Projection: Know how to take projections, and how to use Gram-Schmidt
to orthogonalize things. Look at the recitation notes from week 6 for an
in-depth explanation of how to do this.

• Stable Vector: For a probability matrix P , a eigenvector corresponding
to the eigenvalue 1, such that the sum of its entries is 1. Recall that there
is a unique stability vector if P is regular (i.e. P > 0,) and furthermore this
stable vector will have all of its entries > 0. (However, if P is not regular,
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there is no such guarantee, and for irregular probability matrices there are
often multiple stable vectors.)

3. Random Questions

If you were in recitation, you saw me answer the coin problem on the infinte
chessboard! If you were not in recitation, you should have been. :p If you’re
burningly curious, feel free to stop by or write and I can explain the basic idea,
though I think some of you guys have more pressing concerns this week.


