
MATH 1A, SECTION 1, WEEK 8 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract. These are the notes from Thursday, Nov. 19th’s recitation, on the

exponential and logarithmic functions. We open with a review of the proper-

ties of the logarithmic function, and work some examples of integration and
logarithmic differentiation; from there, we shift to discussing the exponen-

tial function, quickly reviewing its properties and proving that it is “unique”

among functions that share these qualities.

1. Homework comments

• Homework average: around 85%.
• Comments: People did mostly OK on this set. A few points that people

should avoid:
– Don’t simply calculate a decimal approximation to an equation and use

this as your answer! Often, this means that you lose a lot of valuable
information; for example, the algebraic solution to 0 = x2−2ex+e2 is
the relatively elegant

√
e, whereas a numerical approximation is just

1.649, which looks like nothing remotely interesting.
– So: last week I said that you didn’t have to simplify things if they

didn’t have nice closed forms. I’d like to make the obverse remark
here: if something has a beautiful closed form, please simplify it! The
answer

1
1 + 1

1+ 1
1+1/e

is not nearly as illuminating as
2e + 1
3e + 2

.

– Be careful with your statements of theorems and definitions! I.e.
double-check your proofs to make sure that they’re actually what the
definitions and theorems in your text say they are; several people lost
points this set because they started a problem with an incorrect defi-
nition or statement of a theorem.

– Finally, (as always,) make sure to use lots of words in your proofs!
Words are your friends.

2. Random Question

So: if you give me a set S, I can define a coloring of S by simply assigning a
color to every element of S. For example, we can define a coloring of the set of
points on the unit circle by saying that every point that has positive y-coördinate
is colored red, and that all of the other points are blue. Similarly, we can define a
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coloring of the students at Caltech by coloring people according to house affiliation
– Fleming House students would be colored red, Blacker House students would
be colored black, and so on/so forth (At least, I think all of of your houses have
associated colors.)

The question, then, is the following:

Question 2.1. Can you find a way of coloring the entire plane R2 with the three
colors {red, green, blue}, so that every two points that are distance 1 away from
each other are different colors?

3. The Logarithm - Basic Properties

So: we review here a few of the basic properties of the natural logarithm.

Definition 3.1. We denote the natural logarithm of x, for all x > 0, as the value
of the integral ∫ x

1

1
t
dt,

and denote this quantity as log(x). (Note here that we assume all of our logarithms
are in base e unless explicitly defined otherwise – this is in sharp contrast to other
fields like physics (where most logarithms are base 10) or computer science (where
most logarithms are base 2). Wikipedia has a nice little discussion about this issue,
if you’re interested.)

The function log(x) has the following remarkable properties:
• log(xy) = log(x) + log(y).
• log(xy) = y log(x).
• log(1) = 0.
• log(x) is a bijection (see the notes from Week 2 if you’ve forgotten what a

bijection is!) from (0,∞) to R.
• d

dx (log(x)) = 1
x (this is immediate from the Fundamental Theorem of Cal-

culus.)
The proofs of most of the above are in your text and were done in class; feel free
to write if you would like to see another proof of any of these properties!

So: to get a feel for how log(x) works, let’s work a pair of sample integrations
with it:

Example 3.2. Calculate ∫
log(x)dx.

Proof. We use integration by parts here, and set

u = log(x) du = 1
xdx

dv = 1dx v = x

(Why did we make these choices? Again, as we mentioned in week 7’s notes, we
always want to choose our u and v to make our integrals simpler! In this case,
log(x) is something which becomes much simpler after differentiation – it’s just a
power of x – so we put it in the u-slot and put what’s left over – 1dx – in the
dv-slot.)

http://en.wikipedia.org/wiki/Logarithm#Notations_of_bases_and_implicit_bases
http://www.its.caltech.edu/~padraic/math1a_2009/ma1a_wk2_notes_2009.pdf
http://www.its.caltech.edu/~padraic/math1a_2009/ma1a_wk7_notes_2009.pdf
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This then tells us that∫
log(x)dx = x · log(x)−

∫
1
x
· xdx

= x log(x) +
∫

dx

= x log(x) + x + C,

where C is a constant of integration. �

Example 3.3. Calculate ∫
tan(x)dx.

Proof. We use a substitution here: explicitly, let u = cos(x). Then du = − sin(x)dx,
and we have that ∫

tan(x)dx =
∫

sin(x)
cos(x)

dx

=
∫
− 1

u
du

= − log(|u|) + C

= − log(| cos(x)|) + C.

�

Remark 3.4. So: above, we just wrote that∫
1
t
dt = ln(|t|) + C.

Why is this true? I.e. why did we put absolute values there? This bears a little
discussion, as it turns out that having those absolute value signs is really crucial.

So: first, recall the definition of what an indefinite integral *is* – i.e. if we write∫
f(t)dt = F (t),

this just means that we consider F (t) to be the antiderivative of f(t) – i.e. that
F ′(t) = f(t), or equivalently (by the FTC)∫ b

a

f(t)dt = F (b)− F (a),

wherever the integral on the left exists.
So: where does this integral exist? Well, if both a and b are positive, it exists,

because it’s just the area under the curve
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We know that this is just ln(b)− ln(a) – so no need for absolute values yet.
If a is negative and b is positive, then this integral is the area under the curve
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But this area can’t be computed! I.e. you wind up trying to subtract negative
infinity from infinity, which just doesn’t work at all. So, for whatever function we
decide that the antiderivative

∫
1/t is, we don’t have to worry about it making

sense if a is negative and b is positive.
Finally, we consider what happens when both a and b are negative. In this case,

our integral is the signed area under the curve below:
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This area can be computed! in specific, if we flip first the x and then the y axes,
we can see that the unsigned area here is just ln(|a|)− ln(|b|)!

Consequently, the signed area is −1 · (ln(|a)− ln(|b|)) = ln(|b|)− ln(|a|), because
1/t is negative when t < 0. Thus, our antiderivative has to be ln(|t|) + C in order
for all of this to work out.

4. The Logarithm and Derivatives

One useful thing that the logarithm allows us to do is to calculate the derivatives
of functions that we would otherwise have no techniques to attack. This method is
best illustrated by an example:

Example 4.1. Calculate

d

dx
xx.

Proof. We first note, as a warning, that techniques like the power rule ((xn)′ =
nxn−1) are completely useless here, as it only works for x raised to some constant
power – not a variable!



6 TA: PADRAIC BARTLETT

So we must do something clever – namely, we must use logarithmic differentia-
tion. Explicitly, what do we do? First, define the functions

f(x) = xx,

g(x) = log(f(x))

Then, we have that (via the chain rule)

g′(x) = (log(f(x))′

= f ′(x) · 1
f(x)

and thus that (solving for f ′(x))

f ′(x) = f(x) · g′(x).

But we can actually calculate g′(x)! Explicitly, it’s given by

g′(x) = (log(f(x))′

= (log(xx))′

= (x log(x))′

= x · 1
x

+ log(x)

= 1 + log(x);

consequently, we have that

f ′(x) = f(x) · g′(x)

= xx · (1 + log(x)).

Note that the entire derivation of f ′(x) = f(x)·g′(x) we did above had nothing to
do with our choice of f(x)! In other words, we can use this process to find derivatives
of all kinds of functions f for which we can differentiate their logarithms! �

We do one more example to further illustrate the technique:

Example 4.2. Calculate

d

dx

(
xex
)

.

Proof. As before, let

f(x) = xex

,

g(x) = log
(
xex
)

= ex · log(x).
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Then, just as before, the chain rule tells us that

f ′(x) = g′(x) · f(x);

thus, because

g′(x) = (ex · log(x))′

= ex · 1
x

+ ex · log(x),

we have that

f ′(x) = xex

·
(

ex · 1
x

+ ex · log(x)
)

.

�

5. The Exponential Function - Basic Properties

The above discussion about the logarithm leads itself to a discussion of its inverse
function – the exponential function, ex.

Again, note the following list of useful and remarkable properties:
• e is the unique number such that log(e) = 1.
• exy = exey.
• (ex)′ = ex.
•
∫

ex = ex + C.

6. The Exponential Function - A Sketch Proof of its Uniqueness

We now make a rather remarkably bold claim: that the first two properties listed
above uniquely define the exponential function among all differentiable functions!
To put this more explicitly:

Theorem 6.1. Suppose that f is a differentiable function that satisfies just the
following two properties:

• f(1) = e.
• f(x + y) = f(x)f(y), for any x, y ∈ R.

Then f(x) = ex.

Proof. So: where do we start? Well – the property f(x + y) = f(x)f(y) seems like
something that will be interesting to play with; so let’s see what we can get from
that. This says that, essentially, this function transforms addition into multiplica-
tion – so what happens when we put the additive identity, 0, into the function?
We’d expect to get the multiplicative identity – and indeed, because

f(0) = f(0 + 0) = f(0)f(0)

⇒f(0) = 1 or f(0) = 0.

But if f(0) = 0, then f(1) = f(0 + 1) = f(0)f(1) = 0 · e = 0 which contradicts
our second property – so f(0) = 1! I.e. it sends the additive identity to the
multiplicative identity.
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As well, this property is interesting from a derivative-point of view, in that it
tells us that (by using the definition of the derivative and the above realization that
f(0) = 1)

f ′(x) = lim
h→0

f(x + h)− f(x)
h

= lim
h→0

f(x)f(h)− f(x)
h

= f(x) lim
h→0

f(h)− 1
h

= f(x) lim
h→0

f(h)− f(0)
h

= f(x) · f ′(0).

So: in other words, the derivative of f at any point is just a constant (f ′(0)) times
the value of f at that point! This seems very ex-like, and is quite promising.

In fact, this actually is the last nail in the coffin! For we can now show that our
function f is ex. To do this – we engage in one little piece of trickery. Namely:
suppose something slightly weaker, that f(x) is equal to ecx for some constant c.
Then, we’d have that f(x) · 1

ecx is identically 1, right? So it suffices to show that
f(x) · 1

ecx is a constant that’s equal to 1. But how can we show that something is
a constant? By taking its derivative! So: calculation tells us that(

f(x) · 1
ecx

)′
= f ′(x) · 1

ecx
+ f(x) · −c · 1

ecx

= f ′(0) · f(x) · 1
ex
− c · f(x) · 1

ecx
.

But because f ′(0) = c · e0·c = c, we know that c = f ′(0) – and thus that the above
equation is zero! So f(x) · 1

ecx is a constant, and at 0 we know that

f(0) · 1
ec·0 = 1 · 1 = 1.

So it’s a constant equal to 1 – so f(x) = ecx! And because f(1) = e = e1, we know
that c must be equal to 1; thus, at last, we have that

f(x) = ex

as claimed. �

Cool, no?
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