
MATH 1A, SECTION 1, WEEK 6 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract. These are the notes from Thursday, Nov. 5th’s recitation, which

comes in two main parts. The first is a discussion of the issues that came up

on the midterm; specifically, we talk about things like notational issues, com-
monly made mistakes, and stylistic problems. After finishing that, we move

to working further with derivatives, looking at a few “pathological” examples:

here, we demonstrate just how much mathematical power is contained within
the relatively few concepts we have thus far.

1. Midterm comments

• Midterm average: around 67%.
• Midterm setup: I graded questions 2 and 3, Prof. Ryckman graded ques-

tions 1 and 4.
• Solutions are up on the website, with nicely detailed writeups for all of the

questions. If you’re confused about some of the midterm questions, write
me and I’ll be glad to clarify what I’ve put up there further.

So: there were a decent number of pitfalls that people wandered into in this test.
Here’s a list of some of the most frequently occuring problems on the midterm:

1.1. ⇔ versus =. ⇔ means “is equivalent to.” = means “is equal to.”
Whenever you use either symbol in your work, make a point of translating it

over into words and making sure that what you’ve written isn’t nonsense. I.e. you
should never write

x3 + 3x2 + 3x+ 1⇔ (x+ 1)3,

because that doesn’t make any sense! What would it even mean to say that two
formulas were equivalent? Instead, what you mean is to write

x3 + 3x2 + 3x+ 1 = (x+ 1)3,

because your assertion here is that these two objects are equal.
Similarly, don’t write that

− 1 ≤ sin(x) ≤ 1

=− |x| ≤ |x| sin(x) ≤ |x|,

because again this makes no sense! – what would it even mean to say that two
equations are equal? Instead, what should be written is

− 1 ≤ sin(x) ≤ 1

⇔− |x| ≤ |x| sin(x) ≤ |x|,
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because you’re clearly asserting that these two equations are equivalent – i.e. that
the first equation holds if and only if the second equation holds.

If this is in any way unclear, please write me and I can give you lots of examples
to hopefully clarify this further.

1.2. Induction. Know how to write an inductive proof! Inductive proofs follow a
very carefully set pattern:

• First, notify the reader that you’re going to use induction to prove your
claim, by saying something like “We proceed by induction.”
• Begin by proving the base case. Explicitly state that you’re proving the

base case, and state what the base case is – i.e. tell us which value of n
you’re starting on. If you want to prove that a proposition holds for all
n ≥ 1, your base case must begin at 1!
• After you prove the base case, move to the induction step. State what

your induction hypothesis is – i.e. state that you’re assuming your proposi-
tion holds for some value of n. Then, prove that this claim holds for n+ 1.
Make sure to identify where in the proof you use your induction hypothesis;
this is helpful to the reader.

1.3. ε− δ-proofs. So: how does an ε− δ proof of a limit work? I.e. suppose that
we’re trying to show that

lim
x→c

f(x) = A.

What do we do? Well, if we’re trying to show this by the ε − δ definition, we do
the following:

• We start by considering any possible ε > 0. We don’t get to pick this ε; it
could be anything!
• We then define some constant δ > 0. We can only define δ in terms of

constants we know – so we could do something like setting δ = ε/2, or
δ = π/4, or anything like that. We cannot, however, use a variable we
haven’t defined in our definition of δ! I.e. saying that δ = x is not remotely
allowed.
• Now, we consider any possible x such that 0 < |x − c| < δ. We then use

everything that we know to try to show that |f(x)−A| has to be less than
ε – if we can do this, then we’re done with the proof. That’s it!

I really want to emphasize the parts about considering all possible values of ε
and x, and not picking δ so that it depends on x – these are mistakes that will really
mess up your proof if you make them, and they’re somewhat subtle points. Again,
if you’re confused, write me and I can send you lots more examples and verbiage.

1.4. Limits and Multiplication. So: question: when is

lim
x→c

f(x)g(x) = lim
x→c

f(x) · lim
x→c

g(x)?

Answer: Only when both of the limits limx→c f(x) and limx→c g(x) exist!
We repeat and bold this for emphasis: The limit of a product is equal to

the product of the limits only if both individual limits exist! This is a
really critical point, and cannot be hammered home enough.
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2. Derivatives - Some Unexpected Constructions

In a previous recitation, we mentioned that there were functions that were con-
tinuous at only one point in R – an example we gave was

g(x) =
{
x, x ∈ Q
0, x /∈ Q

A similar question can be asked for derivatives: is there a function that’s dif-
ferentiable at only one point in R? It turns out that there is:

Proposition 2.1. The function

f(x) =
{

x, x ∈ Q
sin(x), x /∈ Q

is differentiable at exactly one point – specifically, the origin.

Proof. So: we know trivially that f(x) is discontinuous at every point p 6= 0, as

lim
x→p,x∈Q

f(x) = lim
x→p,x∈Q

x = p

and

lim
x→p,x/∈Q

f(x) = lim
x→p,x/∈Q

x = sin(p)

are distinct quantities for any p 6= 0. Because a function must be continuous at a
point in order to be differentiable at a point (from class,) we then know that f is
not differentiable at any point p 6= 0.

So we just need to show that f is differentiable at 0 – i.e. that the limit

lim
h→0

f(h)− f(0)
h

= lim
h→0

f(h)
h

exists.
To see this, we use the squeeze theorem. First, recall from the proof that

limx to0 sin(x)/x = 1 the inequality

cos(h) ≤ sin(h)
h
≤ 1

cos(h)

for all h in some small neighborhood of 0.
As well, because cos is bounded above by 1 and positive in some small neighbor-

hood of 0, we have as well that

cos(h) ≤ h

h
= 1 ≤ 1

cos(h)
.

Combining, this gives us that

cos(h) ≤ f(h)
h
≤ 1

cos(h)

in some neighborhood of zero. As both cos(h) and 1/ cos(h) both go to 1 as h goes
to zero, we can apply the squeeze theorem to see that

f ′(h) = lim
h→0

f(h)− f(0)
h

= lim
h→0

f(h)
h

= 1

as well. Thus, f is a function that is differentiable at exactly one point! �
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(At this point in the class, a vote was taken on whether to work through several
examples of the chain and product rule, or to illustrate a particularly fascinating
counterexample in analysis. The counterexample handily won the vote: if you feel
cheated, and want to see a series of worked examples of derivatives, this website
has a list of carefully-worked examples.)

(Also: the following is really cool, but really complicated! Don’t worry about
things being confusing; this material will not reappear later in the class.)

So: here’s a question:

Question 2.2. Is there a function f(x) such that
• f(x) is continuous on all of R,
• wherever f ′(x) exists, it is 0, and
• f(0) = 0, f(1) = 1?

To answer this question, we need to quickly develop two concepts:

2.1. Binary and Ternary Numbers. So: on a day-to-day basis, most of use con-
stantly use the decimal number system – i.e. “base 10”. What does this mean?
Well, it means that we “count” using a system of ten digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
– i.e. that when we see a number like

385.23

we know that this stands for the quantity

3 · 102 + 8 · 101 + 5 · 100 + 2 · 10−1 + 3 · 10−2.

If you think back to your elementary school days, you’ll find that this concept was
being ingrained in your minds even then – the “tens place,” “hundreds place,” and
so on/so forth were just a shorthand for the powers of ten we wrote above.

But (apart from the physiologically convenient feature that we have ten fingers)
there’s really nothing special about using ten digits – we could make a number
system using any number of digits! And, in fact, people have – those of you familar
with computer programming will be familiar with binary, which is a system of
counting that uses only two digits, 0 and 1.

Explicitly, in binary, we write all of our numbers in the form

1011.01

where this stands for the real number

1 · 23 + 0 · 22 + 1 · 21 + 1 · 20 + 0 · 2−1 + 1 · 2−2.

But (again, apart from the physiologically convenient feature that we have two
hands: cf. the late Claude Lévi-Strauss) there’s nothing special about 2, either!
We could make a system with three digits – {0, 1, 2}, and declare that when we
write a number like

2211.02

we intend that this stands for the real number

2 · 33 + 2 · 32 + 1 · 31 + 1 · 30 + 0 · 3−1 + 2 · 3−2.

This system is called the ternary number system; it comes up far less often
than either the decimal or binary number systems, but is quite useful in its own
right, as we will soon demonstrate.

http://archives.math.utk.edu/visual.calculus/2/chain_rule.4/index.html
http://en.wikipedia.org/wiki/Claude_Lévi-Strauss
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2.2. The Cantor Set. The Cantor set is a fractal which we define as follows:
• Start with the interval [0, 1].
• Remove the open middle third (1/3, 2/3) from this interval.
• Take your two remaining intervals [0, 1/3] and [2/3, 1].
• Remove the open middle thirds from each of these intervals – i.e. delete

(1/9, 2/9) and (7/9, 8/9) from each set.
• Take the remaining four intervals.
• Remove *their* middle thirds.
• Repeat.

The set that you get at the end of this process – i.e. after you repeat this process
“infinitely many times” – is called the Cantor set. A picture of what this process
is doing is attached below:

The Cantor set has a number of amazing properties, which you can read about at
length on Wikipedia. Its most salient property for what we’re doing here, however,
we describe here:

Proposition 2.3. The Cantor set can be written as the set

C = {x ∈ [0, 1] : x can be written in ternary using only 0’s and 2’s}.

2.3. Our Function. So, we return to our original goal: to construct a function
such that

• f(x) is continuous on all of R,
• wherever f ′(x) exists, it is 0, and
• f(0) = 0, f(1) = 1.

How can we do this? Well, it turns out that we can “make” a function which
does this by using the Cantor set! I.e. what we do is we “take” the collection of
all of the middle-thirds that we popped out of the Cantor set, and define a step
function on the collection of all of those middle-thirds as in the picture below:

Explicitly, this function is defined as follows:

http://en.wikipedia.org/wiki/Cantor_set
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• Take a number a ∈ [0, 1].
• Write a in ternary, using no 1’s if it’s possible – i.e find a string .a0a1a2a3 . . .

such that a = .a0a1a2a3 . . . in ternary.
• Define the binary number .y0y1y2y3 . . . as follows:

– if the string .a0a1a2a3 . . . has no 1’s in it, define yi = 1 if ai = 2 and
yi = 0 if ai = 0 for every i. This is your number.

– if the string .a0a1a2a3 . . . has a 1 in it – let k be the smallest number
so that ak = 1. Let yi = 0 for every i > k, yi = 0 if i ≤ k and ai = 0,
and yi = 1 if i ≤ k and ai 6= 0. This is your number.

• Let y = .y0y1y2y3 . . ..
• Define f(a) = y.

The explicit definition is kind of ugly; it’s better to focus on the picture, as it
makes it a lot clearer that the function is in fact continuous, has zero derivative
wherever it has a derivative, and goes from 0 to 1!

Again, if this was confusing, don’t worry; this was a really high-level example
that I wanted to show you all because it’s so beautiful. If you can take anything
away from this discussion – an idea of how binary works, the mental image for how
the Cantor set is constructed – you’ve done quite well.

(If you’re interested in a slightly different writeup, Wikipedia has a good discus-
sion of the function, and is where I pulled the picture from.)

http://en.wikipedia.org/wiki/Cantor_function

	1. Midterm comments
	1.1.  versus =.
	1.2. Induction
	1.3. --proofs
	1.4. Limits and Multiplication

	2. Derivatives - Some Unexpected Constructions
	2.1. Binary and Ternary Numbers
	2.2. The Cantor Set
	2.3. Our Function


