
MATH 1A, SECTION 1, WEEK 4 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract. These are the notes from Thursday, Oct. 22’s recitation on limits;

here, we try to define the concept of a limit, discuss several tools we have for

calculating limits, and try our hand at several examples. (The material covered
at the start of the class has been merged into the previous notes on integrals

– look there for a discussion on the various applications of integration!)

1. Administrivia and Announcements

2. HW comments

• Average: 87%, with a nice normal distribution centered around there.
• Common problems: None, really! People did very well on this HW set.

3. Limits - Two Definitions

So: when we write

lim
x→b

f(x) = A,

what do we mean? Intuitively, we mean that whenever x is “close” to b, f(x) is
“close” to A – but how can we phrase this mathematically? We have two definitions,
which are equivalent:

Definition 3.1. For a function f , we say that

lim
x→b

f(x) = A

if and only if for every neighborhood NA of A, there is a neighborhood Nb of b such
that

∀x ∈ Nb, x 6= b, f(x) ∈ NA.

(note that a neighborhood N of a point x is simply an open interval containing
that point.)

Remark 3.2. What is this definition really saying? Well, it’s basically saying that

lim
x→b

f(x) = A

holds if points “close” to b (i.e. picking points in some neighborhood Nb) go to
points “close” to A (i.e. points in our neighborhood NA.) The picture below
illustrates what’s going on here:
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There, however, is a “second” definition of the limit, using the ε−δ notation – we
write “second” because this definition is actually the same as the above definition,
just with different notation and symbols.

Definition 3.3. For a function f , we say that

lim
x→b

f(x) = A

if and only if for every ε > 0, there is a δ > 0 such that whenever a point x is
within δ of b and is not b (i.e. 0 < |x− b| < δ), the point f(x) is within ε of A (i.e.
|f(x)−A| < ε.)

Remark 3.4. What is this other definition really saying? Well, it’s also basically
saying that

lim
x→b

f(x) = A

holds if points “close” to b (i.e. points within δ of b) go to points “close” to A (i.e.
points within ε of A.) Look at the picture below of what’s going on here:
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This picture looks completely identical to our earlier picture! This is because these
definitions are the exact same: all that the ε − δ notation does is gives us a more
concrete definition of what our “neighborhoods” actually are! For most of this
class, we’ll use the ε − δ definition whenever we have to work something out from
basic principles, but the neighborhood definition is probably the more intuitive one
to think about when you’re just trying to understand what’s going on.

We should note, before moving on, the definition of continuity, as it relies so
very heavily on limits:

Definition 3.5. We say that a function f(x) is continuous at a point b iff

lim
x→b

f(x) = f(b);

i.e. that f(x) has a limit at b, and furthermore that limit is the value of the function
itself at that point.

4. Limits - Tools

So: we, thankfully, have a number of tools and observations at hand to help us
calculate limits. We review some of them here:

Proposition 4.1. If the functions f, g have limits A,B such that

lim
x→c

f(x) = A, lim
x→c

g(x) = B,

then we have the following properties:
•

lim
x→c

f(x) + g(x) = A+B,

•
lim
x→c

f(x)− g(x) = A−B,
•

lim
x→c

f(x) · g(x) = A ·B.

As well, if B 6= 0, we have as well that

lim
x→c

f(x)
g(x)

=
A

B
.

Proposition 4.2. All polynomials are continuous everywhere.

Proposition 4.3. All rational functions (that is, functions of the form p(x)
q(x) where

p, q are both polynomials) are continuous whenever their denominator q(x) is nonzero.

Proposition 4.4. sin(x) and cos(x) are continuous everywhere.

Proposition 4.5. (Two-Policeman-Theorem / Squeeze Theorem) If I have three
functions f(x), g(x), h(x) and a neighborhood Nb of some point b such that

(1)

f(x) ≤ g(x) ≤ h(x),∀x ∈ Nb
(2)

lim
x→b

f(x) = lim
x→b

h(x),
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then g(x) has a limit as x approaches b, and furthermore

lim
x→b

g(x) = lim
x→b

h(x) = lim
x→b

f(x).

5. Limits - Worked Examples

So: this, so far, is a lot of theory and not a lot of examples. Let’s fix that.

Proposition 5.1. We claim that

lim
x→0

sin(1/x)

does not exist.

Proof. So: the first step in proving this is to remember what the graph of sin(1/x)
actually looks like. A graph is attached below:

This certainly motivates, at least, the idea that this graph shouldn’t have a limit
at zero: no matter how close you get to the origin, sin(1/x) keeps taking on the
values 1 and -1. We make this a bit more explicit below:

By basic trigonometry, we know that

sin(x) = 1 for x =
4kπ + 1

2
and

sin(x) = −1 for x =
4kπ + 3

2
,

�

for any integer k. So, this implies that

sin(1/x) = 1 for x =
2

4kπ + 1
and

sin(1/x) = −1 for x =
2

4kπ + 3
.

So: we will prove that sin(1/x) has no limit at 0 by contradiction. Suppose not,
that such a limit exists: call it A. Then, by definition, we know that for every ε > 0
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there is a δ > 0 such that whenever 0 < |x| < δ, we have that | sin(1/x) − A| < ε.
Thus, in particular, if ε = 1/2, we know that there must be a δ such that 0 < |x| < δ,
we have that | sin(1/x)−A| < 1/2.

Pick n such that 2
4nπ+1 ,

2
4nπ+1 < δ; this is possible because large values of n make

the denominators of these fractions very large, and thus the fractions themselves
very small. Then, by the ε− δ definition, we must have that∣∣∣∣∣sin

(
1
2

4nπ+1

)
−A

∣∣∣∣∣ < 1/2

and ∣∣∣∣∣sin
(

1
2

4nπ+3

)
−A

∣∣∣∣∣ < 1/2;

but ∣∣∣∣∣sin
(

1
2

4nπ+1

)
−A

∣∣∣∣∣ < 1/2

⇔
∣∣∣∣sin(4nπ + 1

2

)
−A

∣∣∣∣ < 1/2

⇔|1−A| < 1/2

⇒A > 1/2,

and ∣∣∣∣∣sin
(

1
2

4nπ+3

)
−A

∣∣∣∣∣ < 1/2

⇔
∣∣∣∣sin(4nπ + 3

2

)
−A

∣∣∣∣ < 1/2

⇔| − 1−A| < 1/2

⇒A < −1/2.

This is clearly a contradiction, as A cannot be both greater than 1/2 and less than
−1/2. So our initial assumption must be false – i.e. sin(1/x) cannot have a limit
at 0.

Proposition 5.2. We claim that

lim
x→0

x2 · sin(1/x) · cos(ex
2

+ 53 + 1/x2) = 0.

Proof. Perhaps somewhat confusingly, this is a lot easier than the earlier proposi-
tion. Simply observe that

−1 ≤ sin(1/x) ≤ 1,

for all x 6= 0, because sin is bounded between −1 and 1; similarly,

−1 ≤ cos(ex
2

+ 53 + 1/x2) ≤ 1

by the same reasons.
So their product is bounded by the product of these bounds: i.e.

−1 ≤ sin(1/x) cos(ex
2

+ 53 + 1/x2) ≤ 1,
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and thus (multiplying through by x2) we have

−x2 ≤ x2 sin(1/x) cos(ex
2

+ 53 + 1/x2) ≤ x2,

for all x 6= 0.
But we know that

lim
x→0

x2 = lim
x→0
−x2 = 0,

because polynomials are continuous: so applying the squeeze theorem/Two-Policeman
theorem yields that

lim
x→0

x2 · sin(1/x) · cos(ex
2

+ 53 + 1/x2) = lim
x→0

x2 = lim
x→0
−x2 = 0,

as claimed. �

Proposition 5.3. We claim that

lim
x→0

sin(2x)
x

= 2.

Proof. So: first recall from class/Apostol the limit result

lim
x→0

sin(x)
x

= 1.

From here, our claim is merely a trivial application of the double-angle formula:

lim
x→0

sin(2x)
x

= lim
x→0

2 sin(x) cos(x)
x

= lim
x→0

sin(x)
x
· lim
x→0

2 cos(x) = 1 · 2 = 2.

We note that splitting the limit here was OK, as both limits existed. �

Proposition 5.4. We claim, furthermore, that

lim
x→0

sin(nx)
x

= n.

Proof. We proceed by induction. We know, again from class/Apostol, that the base
case

lim
x→0

sin(x)
x

= 1

is true: so we proceed inductively.
Suppose that

lim
x→0

sin(nx)
x

= n.

We then seek to show that

lim
x→0

sin((n+ 1)x)
x

= n+ 1.

To do this, we merely use the angle-addition formula:

lim
x→0

sin((n+ 1)x)
x

= lim
x→0

sin(nx) cos(x) + sin(x) cos(nx)
x

= lim
x→0

sin(nx) cos(x)
x

+ lim
x→0

sin(x) cos(nx)
x

= lim
x→0

sin(nx)
x

lim
x→0

cos(x) + lim
x→0

sin(x)
x

lim
x→0

cos(nx)

= n · 1 + 1 · 1 = n+ 1,
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where that last step came via using the inductive hypothesis. We note again that
our various splits of the limits were all kosher, as in each case the limit existed. �
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