
MATH 1A, SECTION 1, WEEK 2 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract. These are the notes from Thursday, Oct. 8’s recitation on rational

numbers, irrational numbers, and the infinte. We start by defining the rational

numbers as equivalence classes (and define just what an equivalence class and
an equivalence relation are along the way.) From there, we formally define

functions and the notions of injective, surjective, and bijective functions, and

use these notions to talk about the “sizes” of sets – even infinite ones! In
particular, we close by showing that, in a very real way, that there are “more”

real numbers than there are rational numbers.

1. Administrivia and Announcements

• Sickness: so, there’s apparently a lot of various plagues running around!
If you’re sick and can’t complete the set on time, go to the SCC as soon
as you’re able to get a note, and get it to me (ideally by putting it in my
mailbox.)
• Late sets: also, turn these into my mailbox in Sloan, and not the normal

HW box.

2. HW comments

• Average: 60%, with a completely flat distribution.
• Common problems: just a lot of issues with getting used to proofs: nota-

tional issues, people not using their words to describe what they’re doing,
proofs being done “backwards” (i.e. students were assuming at the start of
their proof what they wanted to show,) long strings of equations without
any logical connectives (⇔,⇒) to show the connections between them. It’ll
get easier with practice.

3. Defining the Rational Numbers - Equivalence Relations

So: first, recall the definition of the rational numbers that was put forth in
Apostol, and that we had to use on the last set:

Definition 3.1. Quotients of integers a/b are called rational numbers.

This definition, as you may remember from your first problem set, was kind
of problematic – specifically, it wasn’t clear that for any rational number a/b we
could find a rational number c/d such that a/b = c/d and GCD(c, d) = 1. As
well, from the definition it’s not entirely clear which quotients of integers are going
to represent different rational numbers: i.e. while we know that 1/2 and 2/4 are
the same number, it’s not immediately obvious from the definition. We’d like a
new definition that fixes these problems: to do that, we have to introduce some
definitions
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Definition 3.2. A relation R on a set A is a collection of ordered pairs of elements
of A. For any two elements x, y ∈ A, we’ll write xRy whenever the pair (x, y) is in
our relation.

Examples 3.3. The symbol “<” is a relation on the real numbers. Explicitly, it
consists of all of the pairs (x, y) such that y − x > 0.

The phrase “is a student of” is a relation on the set of people at Caltech. Ex-
plicitly, it consists of all of the pairs of people (x, y) such that x is a student of
y.

Definition 3.4. An equivalence relation ∼ on a set A is a relation that satisfies
the following properties:

• Reflexivity: for every x ∈ A, x ∼ x.
• Symmetry: for every x, y ∈ A, if x ∼ y, y ∼ x
• Transitivity: for every x, y, z ∈ A, if x ∼ y and y ∼ z, x ∼ z.

If we have an equivalence relation on a set A, we can then define the equivalence
class of an element x in A as the collection of all things that are related to x under
the relation ∼.

Examples 3.5. The relation “<≤” is not an equivalence relation on the real num-
bers: while it is indeed transitive (as x ≤ y ≤ z implies x ≤ z) and reflexive (as
x ≤ x,∀x), it’s not symmetric (because x ≤ y does not imply y ≤ x.)

Similarly, the relation “is a sibling of” on the set of people in LA is not an
equivalence relation – while this is symmetric and transitive, it’s decidedly not
reflexive (as most people are not their own brother or sister.)

The relation “=” on the real numbers, however, is an equivalence relation, as it’s
obviously symmetric, reflexive and transitive. The equivalence class of any element
x ∈ R is just x, as x is the only real number equal to x.

Similarly, the relation “has the same hair color as” defines an equivalence relation
on the people in this class – it’s clearly a reflexive relation (as one always has the
same hair color as oneself,) symmetric (as if x has the same hair color as y, then
y trivially has the same hair color as x,) and transitive (as if x has the same hair
color as y, who has the same hair color as z, then they all have the same hair color.)
The equivalence class of any person in our class is thus the collection of all of the
people with the same hair color as that person – in other words, our equivalence
relation is just a way of dividing our class into smaller sets, each of which is made
of people all with the same hair color!

In general, equivalence classes are just generalizations of the notion of equality
– ways of grouping things together based on certain properties, like hair color, or
being the same number, or the same height, or from the same state. They offer us
a way to say that two things, as far as we are concerned, are mathematically the
“same,” even though they outwardly may look different.

It turns out that we can define the rational numbers as an equivalence rela-
tion! This will give us a rigorous way to insist that numbers like 1/2 and 2/4 are
representing the same things.

Definition 3.6. Take the set of all pairs of integers a/b such that b > 0. We define
a relation ∼ on this set as follows:

a/b ∼ c/d⇔ ad = bc.
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Proposition 3.7. The relation ∼ defined above is an equivalence relation.

Proof. To see this, we just have to check the three defining properties of an equiv-
alence relation:

• Reflexivity: we want to show that for any pair a/b, b 6= 0, that a/b ∼ a/b.
But

a/b ∼ a/b⇔ ab = ab

is obviously true; so we’re done.
• Symmetry: we want to show that for any two pairs a/b, c/d, b, d 6= 0, that
a/b ∼ c/d implies c/d ∼ a/b. But

a/b ∼ c/d⇔ ad = bc⇔ bc = ad⇔ c/d ∼ a/b,

so we’re done.
• Transitivity: we want to show that for any three pairs a/b, c/d, e/f, b, d, f 6=

0, that if a/b ∼ c/d and c/d ∼ e/f , we have that a/b ∼ e/f . But

a/b ∼ c/d⇔ ad = bc⇔ a = bc/d⇔ af = bcf/d

c/d ∼ e/f ⇔ cf = ed⇔ e = cf/d⇔ eb = bcf/d

⇒ af = bcf/d = eb⇔ a/b ∼ e/f.

So we’re done!
This proves that ∼ is an equivalence relation on our set of all pairs a/b where
b > 0. �

So: with this in hand, we can finally define the rational numbers:

Definition 3.8. Take the set A of all pairs of integers a/b where b > 0. We define
the rational numbers to be the collection of all of the equivalence classes of the set
A under the equivalence relation ∼ we just defined above.

In other words: a rational number r ∈ Q is the set of all of the fractions that
are equal to r! i.e.

{1/2, 2/4, 3/6, 4/8, 5/10, 6/12, 7/14 . . .}

is the rational number “1/2” – though we could just as easily call it “2/4,” or even
“24/48.”

In general, we won’t ever make use of this crazy infinite-set way of describing
the rational numbers – we’ll just think of them as pairs a/b where b 6= 0. But the
cool thing about this definition is it fixes our two earlier problems:

(1) under the definition above, the numbers 1/2 and 2/4 are representing the
same set –so we can actually think of them as being equal! This is a major
advantage over our original definition, which did not make it clear that
these kinds of fractions should be thought of as equal to each other.

(2) Given any rational number r, we can now find integers a, b such that a/b =
r and a, b have no common factors! This again comes from our above
definition.

To see this: take any rational number r, and look at the set of fractions
represented by r. Look, specifically, at the denominators of all of those
fractions – this is a collection of positive integers, and thus has a smallest
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member b. Let a be the numerator corresponding to this denominator b,
and look at a/b – we claim that a and b have no common factors.

To see this, we proceed by contradiction: suppose that they had some
common factor c. Then look at (a/c)/(b/c) – by definition, r is a repre-
sentative of this fraction as well, and it has a smaller denominator than
a/b did. This contradicts our choice of b (because we picked the small-
est denominator!) – so we know that no such common factor could have
existed.

4. Functions - A Formal Viewpoint

Definition 4.1. A function f with domain A and range B is a collection of pairs
(a, b), a ∈ A, b ∈ B such that there is exactly one pair (a, b) for every a ∈ A.

Example 4.2. f(x) = sin(x), with domain R and range R, is a function.
g(x) = sin(x), with domain [0,∞) and range R, is also a function. g is in fact a

different function than the function f we defined above, because it has a different
domain.

The function h depicted below by the three arrows is a function, with domain
{cat, mongoose, π} and range {42, elephant, SFL}.

cat

&&NNNNNNNNNNN 42

mongoose

88pppppppppppp
elephant

π

@@������������������
SFL

This may seem like a silly example, but it is important to remember this idea of
functions merely being maps between sets. Often, students fall into the trap of
assuming that everything’s a map from R → R, and furthermore that it will have
some nice form, like x2 or arcsin(x); in “reality,” however, your typical function
will not have a nice closed form, nor will it necessarily be a map on something as
well-behaved as R.

Definition 4.3. We call a function f injective if it never hits the same point twice
– i.e. for every b ∈ B, there is at most one a ∈ A such that f(a) = b.

Example 4.4. The function f(x) = x2 with domain R and range R is not injective,
because it sends −1 and 1 to the same place (as −12 = 12 = 1.)

However, g(x) = x2 with domain [0,∞) and range R is an injective function!
This is because any two different positive numbers have different squares.

The function h depicted below by the three arrows is not injective, as both the
mongoose and π are sent to 42:

cat

&&NNNNNNNNNNN 42

mongoose

88pppppppppppp
elephant

π

@@������������������
SFL



MATH 1A, SECTION 1, WEEK 2 - RECITATION NOTES 5

However, the function i depicted below is injective, as it sends each element in its
domain to different places:

cat

&&NNNNNNNNNNN 42

mongoose

88pppppppppppp
elephant

π // SFL

Definition 4.5. We call a function f surjective if it hits every single point in its
range – i.e. if for every b ∈ B, there is at least one a ∈ A such that f(a) = b.

Example 4.6. The function f(x) = x2 with domain R and range R is not surjec-
tive, because it never hits any of the negative numbers.

However, g(x) = x2 with domain R and range [0,∞) is a surjective function!
This is because any positive number has a square root.

The function h depicted below is not surjective, as nothing hits the element SFL:

cat // 42

mongoose

88pppppppppppp
elephant

SFL

However, the function i depicted below is surjective, as it hits every element in the
range:

cat

&&NNNNNNNNNNN 42

mongoose

&&NNNNNNNNNNN elephant

π

@@������������������
SFL

Definition 4.7. We call a function bijective if it is both injective and surjective.

Example 4.8. The function f(x) = x2 with domain R and range R is not bijective
because it isn’t surjective.

However, g(x) = x2 with domain [0,∞) and range [0,∞) is a bijective function!
This is because any positive number has exactly 1 square root, which is also positive.

The function h depicted below by the three arrows is not bijective, as nothing
hits the element SFL (thus making it not surjective) and the element 42 is hit three
times (thus making it not injective):
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cat // 42

mongoose

88pppppppppppp
elephant

π

@@������������������
SFL

However, the function i depicted below is bijective, as it hits every element in the
range exactly once:

cat // 42

mongoose // elephant

π // SFL

5. Sizes of Infinity

Definition 5.1. We say that two sets A, B are the “same size” – formally, that
they are sets of the same cardinality – if there is a bijection from A to B.

Remark 5.2. It’s worth noting that in the finite case, this makes complete sense.
Why? If A and B are finite sets, it’s pretty clear that we can only have an injective
function from A to B if there aren’t more elements in A than there are spaces for
them in B. Also, we’re only going to be able to have a surjective function from A
to B if there aren’t more elements in B than there are elements in A to hit them
with; combining these two results, we see that A and B would have to be the same
size if there was a bijection between A and B.

Definition 5.3. For any two sets A, B, we define the following sets:

• A ∪ B: this is the set consisting of all of the elements in either A or B.
Formally,

A ∪B = {x|x ∈ A or x ∈ B}.

• A ∩B: this is the set of all of the elements in both A and B. Formally,

A ∩B = {x|x ∈ A and x ∈ B}.

• A \B: this is the set of all of the elements in A that are not also members
of B. Formally,

A ∪B = {x|x ∈ A and x /∈ B}

So: with these definitions in hand, we set out to prove some surprising results.

Proposition 5.4. The sets N and N ∪ {mongoose} are the same cardinality.

Proof. Consider the following map:
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N N ∪ {mongoose}
1 // mongoose
2 // 1
3 // 2
4 // 3
5 // 4
6 // 5
...

...

i.e. the map which sends 1 to the mongoose and sends n → n − 1, for all n ≥ 2.
This is clearly a bijection; so these sets are the same size. �

Proposition 5.5. The sets N and Z are the same cardinality.

Proof. Consider the following map:

N Z

...

1

++

−3

2

,,

−2

3

,,

−1

4

44

0

5

..

1

6

<<

2

...
...

i.e. the map which sends n → (n − 1)/2 if n is odd, and n → −n/2 if n is even.
This, again, is clearly a bijection; so these sets are the same cardinality. �
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Proposition 5.6. The sets N and Q are the same cardinality.

Proof. Consider the following picture:

It is left to the reader to understand how the above picture is related to a bijection
from N to Q. �

Proposition 5.7. The sets N and [0, 1) are in fact different cardinalities – i.e. one
of them is “larger” than the other.

Proof. (This is Cantor’s famous diagonalization argument.) Suppose not – that
they were the same cardinalities. Pick a bijection f from N to [0, 1).

For every n ∈ N, look at the number f(n) ∈ [0, 1). This is a number between
0 and 1; so it has a decimal representation. Pick numbers an,1, an,2, an,3, . . . that
correspond to this decimal representation – i.e. pick numbers an,i such that

f(n) = .an,1an,2an,3 . . .

For example, if f(4) = .125, we would pick a4,1 = 1, a4,2 = 2, a4,3 = 5, and
0 = a4,4 = a4,5 = a4,6 = . . ., because the first three digits are 1,2, and 5, and the
rest of them are zeroes.

Now, write these numbers in a table, as below:

f(1) a1,1 a1,2 a1,3 a1,4 . . .
f(2) a2,1 a2,2 a2,3 a2,4

f(3) a3,1 a3,2 a3,3 a3,4

f(4) a4,1 a4,2 a4,3 a4,4

...
...

. . .

In particular, look at the entries a1,1a2,2a3,3 . . . on the diagonal. We define a number
B using these digits as follows:

• Define bi = 2 if ai,i 6= 2, and bi = 8 if ai,i = 2.

http://en.wikipedia.org/wiki/Cantor's_diagonal_argument
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• Define B to the be the number with digits given by the bi – i.e.

B = .b1b2b3b4 . . .

This generates a number B that’s just a string of 2’s and 8’s, and lies in [0, 1).
So, if our function f is indeed a bijection, it must be in particular a surjection and
thus there must be some k such that f(k) = B. But the k-th digit of f(k) is ak,k

by construction, and the k-th digit of B is bk – these are different numbers (by
construction,) so f(k) cannot equal B! So f cannot be a bijection, and thus these
sets are of different sizes.

�
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