
MATH 1A, SECTION 1, WEEK 10 - RECITATION NOTES

TA: PADRAIC BARTLETT

Abstract. These are the notes from Thursday, Dec. 3th’s recitation, on

Taylor polynomials. Here, we define the Taylor polynomial, calculate several

examples, and discuss how these approximations differ from the functions they
are modeling.

1. Homework comments

• Homework 7 average: 87%. Homework 8 average: 89%.
• Comments: People did well! Comments are accordingly minimal:

– Before using the methods of partial fractions, make sure that the de-
gree of the polynomial in the numerator is lower than the degree of
the polynomial in the denominator! This tripped a number of people
up.

– (as always:) Words! Use them.

2. Taylor Series - Motivation

As you may have noticed in this course, there are many functions in mathematics
that are “hard to work with” – i.e. their indefinite integrals may be messy to
compute, or perhaps even impossible with the methods we’ve described thus far
in this course. (Examples of such functions are sin(x)/x and e−t2/2.) Yet, we will
often want to work with and study such functions – the first, sin(x)/x, comes up
in signal processing, and the second, e−t2/2, is the normal distribution (and thus
shows up everywhere.)

How can we study such functions? One method, which we outline in this recita-
tion, is the study of Taylor’s method for approximating these functions by polyno-
mials. The motivation for this is the following situation: Suppose that you have
some function f(x), and you want to create a polynomial that will “look like” f(x).
Well, maybe it’s going to be impossible to make a polynomial that looks like f(x)
everywhere – for example, no polynomial approximation to sin(x) will ever be very
good everywhere, because sin(x) is an oscillating bounded function and any non-
constant polynomial is unbounded on R. So we’ll attempt the easier task of trying
to approximate f(x) just around some point c.

So: how can we do this? Well, suppose you’re trying to approximate f(x) by
some polynomial T0 of degree 0 – i.e. a constant– at c. What is the best you’re
going to be able to do? Well, about all you can do is make sure that the function
f(x) and your approximation T0 will at least agree at c – so T0 = f(c) is probably
the best approximation we could hope for.
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Now, how about approximating f(x) by a linear polynomial? Well, we can once
again at least force T1(c) = f(c) – but we have this linear term we can use as well!
So, we can actually make something that agrees with f(x) at c, and also has the
same first derivative as f(x) at c, by defining T1(x) = f(c) + f ′(c) · (x − c)! This
seems to be a pretty good approximation of what f is doing at c – not only does it
agree with f there, but at c, it has the same rate of change as f !

Consider now how we could approximate f by a quadratic polynomial. As you
may have guessed from the above, we’re trying to find a T2(x) that will match f
at its 0th, 1st, and 2nd derivatives – so how can we do that?

Well, if T2(c) = f(c), then we can write it in the form

T2(x) = f(c) + α1(x− c) + α2(x− c)2,
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for some constants α1 and α2, because we know when we plug in c we should get
zero!

So: if the first derivative of T2(x) is equal to f ′(x) at c, then we also have that

f ′(c) = (T2(x))′ = α1 + 2α2(x− c),

i.e.α1 = f ′(c).
As well, if the second derivative agrees, then we must also have

f ′′(c) = (T2(x))′′ = 2α2,

i.e. α2 = f ′′(c)/2.
So, we have that

T2(x) = f(c) +
f ′(c)

1
(x− c) +

f ′′(c)
2

(x− c)2.

This gives us an even better local approximation of f , as T2 has the same value,
slope, and local curvature as f does at c!

In general, if we want to make a polynomial Tn of degree n that has the same
first n derivatives as some function f , we just need to find constants α0, α1, . . . αn

so that the polynomial

Tn(x) = α0 + α1(x− c) + α2(x− c)2 + . . .+ αn(x− c)n

has the same derivatives as f(x) does at c.
But what do derivatives of Tn look like? Well, the 0th derivative at c is just

Tn(c) = α0 + α1(c− c) + α2(c− c)2 + . . .+ αn(c− c)n = α0,
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the first derivative at c is just

T ′n(c) = (α0 + α1(x− c) + α2(x− c)2 + . . .+ αn(x− c)n)′
∣∣∣∣∣
c

= (α1 + 2α2(x− c) + . . .+ nαn(x− c)n−1)

∣∣∣∣∣
c

= α1 + 2α2(c− c) + . . .+ nαn(c− c)n−1,

= α1

the second derivative is just

T ′′n (c) = (α0 + α1(x− c) + α2(x− c)2 + . . .+ αn(x− c)n)′′
∣∣∣∣∣
c

= (2α2 + 3 · 2α3(x− c) + . . .+ n(n− 1)αn(x− c)n−2)

∣∣∣∣∣
c

= 2α2 + 3 · 2α3(c− c) + . . .+ n(n− 1)αn(c− c)n−1

= 2α2,

the third derivative is just (bear with me here)

T ′′′n (c) = (α0 + α1(x− c) + α2(x− c)2 + . . .+ αn(x− c)n)′′′
∣∣∣∣∣
c

= (3 · 2 · 1α3 + 4 · 3 · 2α4(x− c) + . . .+ n(n− 1)(n− 2)αn(x− c)n−3)

∣∣∣∣∣
c

= 3 · 2 · 1α3 + 4 · 3 · 2α4(c− c) + . . .+ n(n− 1)(n− 2)αn(c− c)n−3)
= 3!α3;

and following the same pattern, we have (inductively) that

T (k)
n (c) = k! · αk.

So, if these derivatives of Tn(x) are suppose to agree with f(x)’s derivatives at
c, we then have that f (k)(c) = k! · αk, for every k – i.e that αk = f (k)(c)/k!, and
thus that

Tn(x) =
n∑

k=0

f (k)(c)
k!

· (x− c)k.

This polynomial that we just constructed has its first n derivatives in agreement
with f at c! Consequently, it’s a pretty good approximation for f around c – good
enough, in fact, it has a name! This is called the n-th degre Taylor polynomial for
f at c, and we’ll denote such a polynomial by Tn(f)(x).
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3. Taylor Polynomials - Examples

So: if you don’t care about the why, the short of the above is that for a function
f with n derivatives at c, we can make a n-th degree polynomial to approximate f
near c. We call it the Taylor polynomial, and define it as

Tn(f)(x) =
n∑

k=0

f (k)(c)
k!

· (x− c)k.

We calculate a few examples below:

Question 3.1. If f(x) = ax, prove that the Taylor series for f around 0 is

Tn(f)(x) =
n∑

k=0

(log(a))k

k!
xk.

Proof. So: we proceed by induction, which is pretty much the only way to prove
that a given function has a set Taylor series. Specifically, we claim that the k-th
derivative of ax is (log(a))k · ax – if we can show that this is true, then we would
have that

Tn(f)(x) =
n∑

k=0

f (k)(0)
k!

xk

=
n∑

k=0

(log(a))k · a0

k!
xk

=
n∑

k=0

(log(a))k

k!
xk

by the definition of the Taylor polynomial, and we’d be done!
So: again, we are trying to prove that the k-th derivative of ax is (log(a))k · ax.
Base case: k = 0. This is trivial, as ax = (log(a))0 · ax.
Inductive step: Suppose that the k-th derivative of ax was (log(a))k · ax. Then

dk+1

dxk+1
(ax) =

d

dx

(
dk

dxk
(ax)

)
=

d

dx

(
(log(a))k · ax

)
= (log(a))k · (ax)′

= (log(a))k · (ex log(a))′

= (log(a))k+1 · ex log(a)

= (log(a))k+1 · ax.

This proves our inductive claim, and thus shows (again, by the definition of the
Taylor polynomial, that

Tn(ax) =
n∑

k=0

(log(a))k

k!
xk.
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Note that when a = e, this gives us the very special Taylor series for e of

Tn(ex) =
n∑

k=0

1
k!
xk,

as log(e) = 1. �

Question 3.2. If f(x) = (x + 1)a, show that the Taylor series of f around 0 is
given by

Tn(f)(x) =
n∑

k=0

(
a

k

)
xk,

where
(
a
k

)
is the binomial coefficient defined by(

a

k

)
=
a · (a− 1) · (a− 2) . . . · (a− k + 1)

k!
, k ≤ a

Proof. So: just like before, we want to prove by induction that

dk

dxk
((x+ 1)a) = (a · (a− 1) · (a− 2) . . . · (a− k + 1)) · (x+ 1)a−k,

as this means that (by the definition of the Taylor polynomial)

Tn(f)(x) =
n∑

k=0

f (k)(0)
k!

xk

=
n∑

k=0

(a · (a− 1) · (a− 2) . . . · (a− k + 1)) · (0 + 1)a−k

k!
xk

=
n∑

k=0

(a · (a− 1) · (a− 2) . . . · (a− k + 1))
k!

xk

=
n∑

k=0

(
a

k

)
xk.

So: we proceed by induction.
Base case:k = 0. This is trivial, as the product a · . . . (a− k + 1) is empty when

k = 0, making our claim just that (x+ 1)a = (x+ 1)a.
Inductive step: Assume that

dk

dxk
((x+ 1)a) = (a · (a− 1) · (a− 2) . . . · (a− k + 1)) · (x+ 1)a−k.
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Then, we have that

dk+1

dxk+1
((x+ 1)a) =

d

dx

(
dk

dxk
((x+ 1)a)

)
=

d

dx

(
(a · (a− 1) · (a− 2) . . . · (a− k + 1)) · (x+ 1)a−k

)
= (a · (a− 1) · (a− 2) . . . · (a− k + 1)) · (a− k) · (x+ 1)a−k−1

= (a · (a− 1) · (a− 2) . . . · (a− k + 1)) · (a− (k + 1)− 1) · (x+ 1)a−(k+1)

and thus we’ve proven our claim by induction. As noted above, this then tells us
that

Tn ((x+ 1)a) =
n∑

k=0

(
a

k

)
xk,

as claimed. �

This is pretty much how all Taylor polynomial proofs work! I.e. all we did here
is inductively prove that the derivatives of these functions are of a certain form,
evaluated these derivatives at the point we are taking the Taylor series around, and
plugged these values into the formula for the Taylor polynomial. It’s just induction
and derivatives – nothing we haven’t done a hundred times before!

4. Taylor Polynomials and the Error Function

In our motivational discussion earlier, we described the Taylor polynomial as an
attempt to “approximate” a function locally. This notion – of Taylor polynomials
as approximations to a function f – motivates the following question: How “good”
of an approximation is a Taylor polynomial Tn(f) for a given function f?

To help answer this question, we define the n-th error function En(f)(x) at some
point c for a function f(x) to be

En(f)(x) = f(x)− Tn(f)(x),

namely the difference between the function and its n-th order Taylor polynomial
approximation at c. (This is also called the n-th remainder function by many
people.)

If the function En(f)(x) is small, we know that the n-th order Taylor polynomial
is doing a “good” job of approximating our function, as the distance from it and the
function itself is small – conversely, if En(f)(x) blows up, our Taylor polynomial
must be very far from f(x), and thus is a poor approximation. Thus, if we want to
approximate a function by a Taylor polynomial over a certain interval, all we have
to do is two things:

• calculate its Taylor polynomial, and
• find the maximum of the error function over that interval.

This then will tell us that our Taylor polynomial is at least within this maximum
distance from our function throughout the interval! In particular, if the error
function is very small through the entire interval, we can often replace our function
with the Taylor polynomial and still be accurate to a very high degree of precision.

So: we present without proof a useful identity from Apostol/class, that we will
often use to bound the error function:
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Proposition 4.1. Suppose that f has a continuous n+1-th derivative in the interval
[a, b], and c is some point in [a, b]. Suppose further that this n+ 1-th derivative is
bounded on [a, b] – i.e. that there are values m,M such that m ≤ f (n1) ≤M .

Then so is f ’s error function! Explicitly, the following inequalities holds over
[a, b]:

m · (x− a)n+1

(n+ 1)!
≤ En(f)(x) ≤M · (x− a)n+1

(n+ 1)!
, x > a,

m · (a− x)n+1

(n+ 1)!
≤ (−1)n+1En(f)(x) ≤M · (a− x)n+1

(n+ 1)!
, x < a.

An example of how this is used might make the above discussion more illumi-
nating:

Question 4.2. Approximate the integral∫ 1/3

0

e−t2dt

to within 10−6.

Proof. (Denote E(x) = ex for notational convenience.)
So: from our earlier work, we know that the n-th order Taylor polynomial for ex

around 0 is given by

T3(E)(x) = 1 +
x

1
+
x2

2
+
x3

3!
and thus that the 3rd error function for ex around 0 is

E3(E)(x) = ex − T3(E)(x)

= ex − 1 +
x

1
+
x2

2
+
x3

3!

Rearranging the above tells us that

ex = 1 +
x

1
+
x2

2
+
x3

3!
+ E3(E)(x)

⇒ e−t2 = 1− t2

1
+
t4

2
− t6

3!
+ E3(E)(−t2)

⇒
∫ 1/3

0

e−t2dt =
∫ 1/3

0

(
1− t2

1
+
t4

2
− t6

3!
+ E3(E)(−t2)

)
dt

=
(
t− t3

3
+
t5

10
− t7

42

) ∣∣∣∣∣
1/3

0

+
∫
E3(E)(−t2)dt

=
1
3
− 1

34
+

1
35 · 2 · 5

− 1
38 · 2 · 7

+
∫
E3(E)(−t2)dt

=
147604
459270

+
∫
E3(E)(−t2)dt.

So, if we can bound the integral of the error function to be smaller than 10−6, then
we know that the integral of e−t2 is within 10−5 of 147604

459270 , and we would be done!
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We set about doing this by using our proposition from earlier. Because ex is
infinitely differentiable, we know that its 4th derivative exists – explicitly, it’s just
ex again! On the interval [−1/9, 0], we know that this is bounded below by 0 and
above by e0 = 1; consequently, we have that

0 · x
4

4!
≤ En(E)(x) ≤ 1 · x

4

(4)!

⇔ 0 ≤ En(E)(x) ≤ x4

24
.

Plugging in −t2 for x then gives us that

0 ≤ En(E)(−t2) ≤ t8

24
, t ∈ [0, 1/3];

thus, we can bound the integral
∫ 1/3

0
E3(E)(−t2)dt below by 0 and above by∫ 1/3

0

t8

24
dt =

t9

216

∣∣∣∣∣
1/3

0

=
1

4251528
< .000001 = 10−6.

So we’re done! �
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