RECITATION 4: DERIVATIVES

TA: PADRAIC BARTLETT

1. Last Week's Homework

So: last week's HW went rather well on the whole, with an average slightly south of 90 . There was only one concept that caused widespread issues, and that was the concept of discontinuity; i.e. in question (2), where you were asked to find a function with precisely one point of continuity, almost all of you found such a function, and showed that it was continuous at this one point. However, showing that it was discontinuous at all other points didn't always go so well; so I've listed a few ways to go about showing that functions are discontinuous.

Proposition 1.1. A function f is discontinuous at a if there are sequences $\left\langle x_{i}\right\rangle$, $\left\langle y_{i}\right\rangle$ that both converge to a, such that

$$
\lim _{i \rightarrow \infty} f\left(x_{i}\right) \neq \lim _{i \rightarrow \infty} f\left(y_{i}\right) .
$$

Remark 1.2. By the definition above, we can easily see that the function

$$
f(x)=\left\{\begin{array}{r}
x, x \in \mathbb{Q} \\
0 \mathrm{o} / \mathrm{w}
\end{array}\right.
$$

is discontinuous at any $a \neq 0$, as we can simply pick sequences $\left\langle x_{i}\right\rangle$ of rational numbers and $\left\langle y_{i}\right\rangle$ of irrational numbers that both converge to a, and observe that $\lim f\left(x_{i}\right)=a \neq 0=\lim f\left(y_{i}\right)$.
Proposition 1.3. A function f is discontinuous at a if

$$
\exists \epsilon>0 \forall \delta>0 \exists x \in(a-\delta, a+\delta) \text { s.t. }|f(x)-f(a)|>\epsilon .
$$

Remark 1.4. This concept of discontinuity is just the straightforward negation of the standard definition of continuity, i.e. the negation of the sentence

$$
\forall \epsilon>0 \exists \delta>0 \forall x \in(a-\delta, a+\delta)|f(x)-f(a)|<\epsilon .
$$

(This is a specific example of how negation and quantifiers work: i.e., if we have any logical statement S, then we can write the negation of $S, \neg S$, by simply switching all of the quantifiers (i.e. replacing all of the \exists with \forall and all of the \forall with \exists) and negating the conclusion.)

Anyways: given this definition, we can again show that the function

$$
f(x)=\left\{\begin{array}{r}
x, x \in \mathbb{Q} \\
0 \mathrm{o} / \mathrm{w}
\end{array}\right.
$$

is discontinuous at any $a \neq 0$.
To do this, fix such an a.
Let $\epsilon=|a / 2|$, and choose any $\delta>0$.
Then, if $a \in \mathbb{Q}$, we can pick (by the density of irrational numbers) an irrational number $x \in(a-\delta, a+\delta)$, and thus conclude that $|f(x)-f(a)|=|a|>|a / 2|=\epsilon$.

If $a \notin \mathbb{Q}$, we can pick (by the density of rational numbers) a rational number $x \in(a, a+\delta)$; then $|f(x)-f(a)|>|a|>|a / 2|>\epsilon$.

2. Derivatives: Definitions and Properties

Definition 2.1. We say that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at x if

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

exists. If this limit does exist, we refer to it as $f^{\prime}(a)$.
Remark 2.2. The following useful properties about derivatives are known:

- For all $x \in \mathbb{R},\left(x^{n}\right)^{\prime}=n x^{n-1},(\sin (x))^{\prime}=\cos (x),(\cos (x))^{\prime}=-\sin (x)$, $(c)^{\prime}=0$.
- The product rule: $(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)$, if $f^{\prime}(x), g^{\prime}(x)$ both exist.
- The quotient rule: $f(x) / g(x)=\frac{g(x) f^{\prime}(x)-g^{\prime}(x) f(x)}{g^{2}(x)}$, if $f^{\prime}(x), g^{\prime}(x)$ both exist. (This is just the product rule applied to $f(x), g^{-1}(x)$, and so I usually don't bother remembering it.)
- The chain rule: $(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)$, if $f^{\prime}(x), g^{\prime}(x)$ both exist.
- Rolle's theorem: if there exist $a<b$ such that $f(a)=f(b)$ and f is continuous on $[a, b]$, differentiable on (a, b), then there is an $x \in(a, b)$ such that $f^{\prime}(x)=0$.
- Mean-Value Theorem: if f is continuous on $[a, b]$ and differentiable on (a, b), then there exists an $x \in(a, b)$ such that

$$
f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}
$$

3. Derivatives: Examples

Proposition 3.1. The function $\arcsin (x)$ is differentiable on $(-1,1)$, and has derivative $\frac{1}{\sqrt{1-x^{2}}}$
Proof. Let $y=\arcsin (x)$; then $\sin (y)=x$. Taking the derivative of both sides gives us

$$
\begin{gathered}
\frac{d}{d x} \sin (y)=\frac{d}{d x} x \Leftrightarrow \\
\cos (y) \cdot \frac{d y}{d x}=1 \Leftrightarrow \\
\frac{d y}{d x}=\operatorname{fracd}(\arcsin (x)) d x=\frac{a}{\cos (\arcsin (x))},
\end{gathered}
$$

and $\cos (\arcsin (x))=\sqrt{1-x^{2}}$ via the Pythagorean theorem and some basic trigonometry.
Exercise 3.2. Is there a function f that is differentiable at exactly one point?
Exercise 3.3. Define the functions $f_{n}(x)$ iteratively as follows:

- Let $f_{0}(x)=x$.
- Let

$$
f_{n}(x)=\left\{\begin{array}{rl}
.5 \cdot f_{n}(3 x) & x \in[0,1 / 3] \\
.5 & x \in[1 / 3,2 / 3] \\
.5+.5 \cdot f_{n}(3 x-2) & x \in[2 / 3,1]
\end{array}\right.
$$

Let $f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$.
Then show that this function is a continuous function on $[0,1]$ such that $f^{\prime}(x)=0$ for all x where it has a derivative, $f(0)=0$, and $f(1)=1$.

Alternately, show that this function is equal to the function $f=f_{1} \circ f_{2}$, for

$$
f_{1}\left(. x_{0} x_{1} x_{2} \ldots\right)=. y_{0} y_{1} y_{2} \ldots,
$$

that sends a number $x \in[0,1]$ written out in its ternary (i.e. base 3) expansion to the binary number.$y_{0} y_{1} y_{2} \ldots$ in $[0,1]$ such that $y_{i}=1$ if and only if $x_{i}=2$ (i.e. $\left.f_{1}(.012201120)=.001100010\right)$, and

$$
f_{2}\left(. x_{0} x_{1} x_{2} \ldots\right)=. x_{0}^{\prime} x_{1}^{\prime} \ldots x_{n}^{\prime} 200000000 \ldots,
$$

where $n+1$ is the smallest number such that $x_{n+1}=1$, and proceed from there.
If you are still confused, look at the following picture:

