
A SHORT INTRODUCTION TO THE IDEA OF PROOF

TA: PADRAIC BARTLETT

1. Basic information

Email: padraic@caltech.edu
Office hour: 8-9pm, Sunday, in Sloan 155.
Recitation: 10-11, Th, in Downs 11

Exercise 1.1. Take an 8x8 chessboard and remove one square from the upper-
right-hand corner. Can you cover it with 2x1 dominoes so that no two dominoes
overlap?

2. What is a proof?

Loosely defined, a proof is a rigorous mathematical argument that demonstrates
that some proposition is true. They are how (pure) mathematics proceeds; they
are the language mathematicians use to convince each other of ideas. Specifically,
a proof of a given statement is a series of axioms or previously established results,
linked together by logical deductions, which at its end demonstrates the validity of
the given statement.

Proving things in a rigorous fashion is a difficult trick to get the hang of; it will
likely take you a while, and your homeworks will be (perhaps) full of red ink. Do
not fret! Everyone is in the same boat as you, and it is a hard thing to initially
learn to do. The best way to get a feel for how proofs work is to look at examples
(say online at mathworld/in Apostol/in lecture/in recitation) and through trial and
experimentation. If you are unsure if something is a valid proof or method of proof,
ask me and I’ll be glad to look it over.

Exercise 2.1. Again, take an 8x8 chessboard and (this time) remove one square
from the upper-right-hand corner and one from the bottom-left-hand corner. Can
you cover this board with 2x1 dominoes so that no two dominoes overlap?

3. Common Mistakes

(Bad) things people often do when starting theoretical mathematics:

• Not using words. Mathematics, contrary to popular opinion, does not
consist of long strings of formulae and numbers; it is made of words, sen-
tences and paragraphs. State what you are doing, and write in words the
logic you employ to move your proof along. Not that you have to explain
everything: i.e. the move from 15x = 5y to 3x = y doesn’t need a treatise.
But if you had to put thought into a given step, it is a good bet that your
readers will want you to explain what you did.
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• Using empirical evidence. Testing things with examples is a good way
to build intuition. But it usually does not prove a statement. (A coun-
terexample would be when you’re disproving something; there, examples
suffice.) If you want to show that (say) the product of two odd numbers is
odd, saying 3 · 3 = 9; 7 · 5 = 35; QED is, um, not a proof. (You wouldn’t
believe how many times I’ve seen proofs like that.)
• Messing up the contrapositive. Suppose you want to show that, say,

“all ravens are black.” A logically equivalent statement you could show
would be that “all non-black things are not ravens;” showing one of these
statements is the same as showing the other. Abstractly: showing X im-
plies Y for two statements X and Y is the same as showing that not-Y
implies not-X. DO NOT make the mistake of thinking that X ⇒ Y is the
same as ¬X ⇒ ¬Y . This happens all the time, with frequently hilarious
results. (note: hilarious results are usually things you want to avoid in
math classes.)

Exercise 3.1. Now take an 8x8 chessboard and randomly remove a white square
and a black square from somewhere on the board. Again, can you cover this board
with 2x1 dominoes so that no two dominoes overlap?

4. Example Proofs; Methods of Proof

There are many methods of proof; here are a few examples.

Theorem 4.1. If n is an integer and n2 is even, then n2 is a multiple of 4.

Proof. Direct Proof:If n is an integer, it is either odd or even. If n is odd, we
know that n2 is also odd (as it is the product of two odd numbers.) So n must be
even; thus, we can write n = 2 ·k for some other integer k. Then n2 = (2 ·k)2 = 4k2

which is a multiple of 4. �

Direct proofs are (usually) boring.

Theorem 4.2.

1 + 2 + 3 + . . . + n =
(n)(n + 1)

2
Proof. Inductive Proof: We note first that the above equality is trivially true
when n = 1, as 1 = 2/2. Now that we have established the base case, we proceed
to the inductive step: assuming that the above equality holds for n, we attempt to
prove that it must consequently hold for n + 1.

So: if the equality

1 + 2 + 3 + . . . + n =
(n)(n + 1)

2
, holds, we have (adding n + 1 to both sides) the equality

1 + 2 + 3 + . . . + n + n + 1 =
(n)(n + 1)

2
+ n + 1,

which is just

1 + 2 + 3 + . . . n + 1 =
(n)(n + 1) + (2)(n + 1)

2
=

(n + 2)(n + 1)
2

,

which is what we wanted to prove. �
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Inductive proofs are far cooler! (yay!) However, cooler things are usually dan-
gerous. Spot the flaw in the following proof, due to G. Pólya:

Theorem 4.3. All horses are the same color.

Proof. We will prove that any finite collection of horses are all of the same color; as
there are only finitely many horses in existence, this will suffice to prove our claim.
We proceed by induction: first, note that any group consisting of just one horse is
trivially a group in which all the horses are of the same color. This takes care of
the base case.

So we are left with the inductive step: assume that all groups of horses of size
n are all of the same color. We then want to show that any group of horses
{1, 2, . . . n + 1} must also all be of the same color. So: look at the group of horses
{1, 2, . . . n}: this is a group of size n, and thus a group all of the same color.
Then look at the group {2, 3, . . . n + 1}; this is also a group of size n and thus
also of the same color. As these two groups have highly nontrivial overlap, we can
thus conclude that the coloring of the group {1, 2, . . . n} is the same as the group
{2, 3, . . . n + 1}; so the entire group of horses is of the same color. So all horses are
the same color. �

Exercise 4.4. Suppose that you have a 10x10 chessboard (manufacturing defect,
perhaps?) and suppose further that you also have a pile of 4x1 dominoes. Can you
cover this board with 4x1 dominoes so that no two dominoes overlap? (Hint: look
at your solutions to the previous exercises, and generalize.)


