< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

High Distance Heegaard Splittings via Dehn Twists Joint Mathematics Meetings 2013

Michael Yoshizawa

University of California, Santa Barbara

January 9, 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

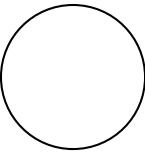
Define terms:

- Heegaard splittings
- Curve complex
- Disk complex
- Hempel distance
- Dehn twists

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Heegaard Splittings

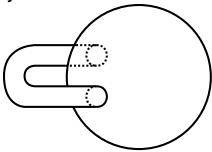
Attaching g handles to a 3-ball B^3 produces a genus g handlebody.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Heegaard Splittings

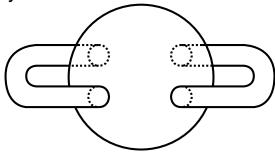
Attaching g handles to a 3-ball B^3 produces a genus g handlebody.



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Heegaard Splittings

Attaching g handles to a 3-ball B^3 produces a genus g handlebody.



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Heegaard Splittings

Let H_1 and H_2 be two (orientable) genus g handlebodies.

- ∂H_1 and ∂H_2 are both closed orientable genus *g* surfaces and therefore homeomorphic.
- A 3-manifold can be created by attaching *H*₁ to *H*₂ by a homeomorphism of their boundaries.

Heegaard Splittings

Let H_1 and H_2 be two (orientable) genus g handlebodies.

- ∂*H*₁ and ∂*H*₂ are both closed orientable genus *g* surfaces and therefore homeomorphic.
- A 3-manifold can be created by attaching *H*₁ to *H*₂ by a homeomorphism of their boundaries.

Definition

The resulting 3-manifold M can be written as $M = H_1 \cup_{\Sigma} H_2$, $\Sigma = \partial H_1 = \partial H_2$.

This decomposition of M into two handlebodies of equal genus is called a **Heegaard splitting** of M and Σ is the **splitting** *surface*.

Curve Complex

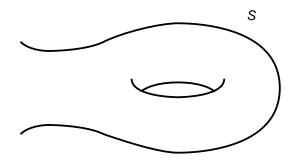
Let *S* be a closed orientable genus $g \ge 2$ surface.

Definition

The **curve complex** of S, denoted C(S), is the following complex:

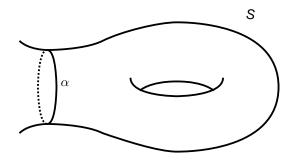
- vertices are the isotopy classes of essential simple closed curves in S
- distinct vertices x₀, x₁, ..., x_k determine a k-simplex of C(S) if they are represented by pairwise disjoint simple closed curves

Curve Complex



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

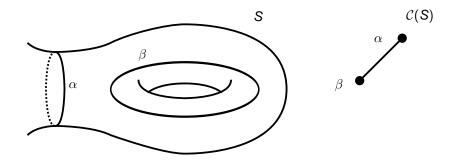
Curve Complex



・ロト・日本・日本・日本・日本・日本

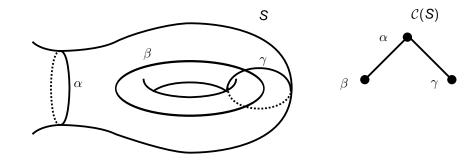
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Curve Complex



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Curve Complex



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Disk Complex

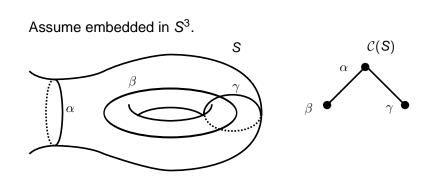
Suppose *S* is the splitting surface for a Heegaard splitting $M = H_1 \cup_S H_2$.

Definition

The **disk complex** of H_1 , denoted $\mathcal{D}(H_1)$ is the subcomplex of $\mathcal{C}(S)$ that bound disks in H_1 . Similarly define $\mathcal{D}(H_2)$.

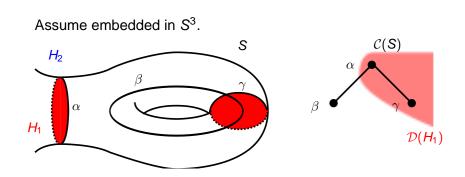
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Disk Complex



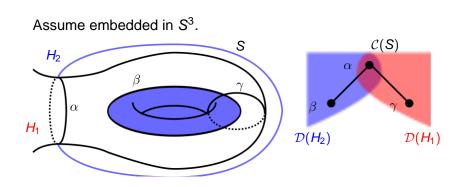
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Disk Complex



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Disk Complex



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Distance

Definition

(Hempel, 2001) The **distance** of a splitting $M = H_1 \cup_S H_2$, denoted $d(\mathcal{D}(H_1), \mathcal{D}(H_2))$, is the length of the shortest path in $\mathcal{C}(S)$ connecting $\mathcal{D}(H_1)$ to $\mathcal{D}(H_2)$.

The distance of a splitting can provide information about the original manifold.

(日) (日) (日) (日) (日) (日) (日)

Distance

Definition

(Hempel, 2001) The **distance** of a splitting $M = H_1 \cup_S H_2$, denoted $d(\mathcal{D}(H_1), \mathcal{D}(H_2))$, is the length of the shortest path in $\mathcal{C}(S)$ connecting $\mathcal{D}(H_1)$ to $\mathcal{D}(H_2)$.

The distance of a splitting can provide information about the original manifold.

 If a manifold admits a distance *d* splitting, then the minimum genus of an orientable incompressible surface is *d*/2.

Distance

Definition

(Hempel, 2001) The **distance** of a splitting $M = H_1 \cup_S H_2$, denoted $d(\mathcal{D}(H_1), \mathcal{D}(H_2))$, is the length of the shortest path in $\mathcal{C}(S)$ connecting $\mathcal{D}(H_1)$ to $\mathcal{D}(H_2)$.

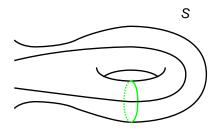
The distance of a splitting can provide information about the original manifold.

- If a manifold admits a distance *d* splitting, then the minimum genus of an orientable incompressible surface is *d*/2.
- If a manifold admits a distance ≥ 3 splitting, then the manifold has hyperbolic structure.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Dehn twists

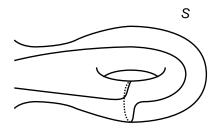
A **Dehn twist** is a surface automorphism that can be visualized as a "twist" about a curve on the surface.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Dehn twists

A **Dehn twist** is a surface automorphism that can be visualized as a "twist" about a curve on the surface.



(日)

Theorem 1

- *H* is a genus $g \ge 2$ handlebody,
- γ is a simple closed curve that is distance $d \ge 2$ from $\mathcal{D}(H)$,
- *M^k* is the 3-manifold created when *H* is glued to a copy of itself via *k* Dehn twists about *γ*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Theorem 1

- *H* is a genus $g \ge 2$ handlebody,
- γ is a simple closed curve that is distance $d \ge 2$ from $\mathcal{D}(H)$,
- *M^k* is the 3-manifold created when *H* is glued to a copy of itself via *k* Dehn twists about *γ*.

Theorem

(Casson-Gordon, 1987). For $k \ge 2$, M^k admits a Heegaard splitting of distance ≥ 2 .

Theorem 1

- *H* is a genus $g \ge 2$ handlebody,
- γ is a simple closed curve that is distance $d \ge 2$ from $\mathcal{D}(H)$,
- *M^k* is the 3-manifold created when *H* is glued to a copy of itself via *k* Dehn twists about *γ*.

Theorem

(Casson-Gordon, 1987). For $k \ge 2$, M^k admits a Heegaard splitting of distance ≥ 2 .

Theorem

(Y.,2012). For $k \ge 2d - 2$, M^k admits a Heegaard splitting of distance exactly 2d - 2.

(日) (日) (日) (日) (日) (日) (日)

Theorem 2

- H_1 and H_2 are genus g handlebodies with $\partial H_1 = \partial H_2$
- $d(\mathcal{D}(H_1), \mathcal{D}(H_2)) = d_0$
- γ is a simple closed curve that is distance d₁ from D(H₁) and distance d₂ from D(H₁)
- *M^k* is the 3-manifold created by gluing *H*₁ to a copy of *H*₂ via *k* Dehn twists about *γ*

Theorem 2

- H_1 and H_2 are genus g handlebodies with $\partial H_1 = \partial H_2$
- $d(\mathcal{D}(H_1), \mathcal{D}(H_2)) = d_0$
- γ is a simple closed curve that is distance d₁ from D(H₁) and distance d₂ from D(H₁)
- *M^k* is the 3-manifold created by gluing *H*₁ to a copy of *H*₂ via *k* Dehn twists about *γ*

Theorem

(Casson-Gordon, 1987). Suppose $d_0 \le 1$ and $d_1, d_2 \ge 2$. Then for $k \ge 6$, M^k admits a Heegaard splitting of distance ≥ 2 .

Theorem 2

• H_1 and H_2 are genus g handlebodies with $\partial H_1 = \partial H_2$

•
$$d(\mathcal{D}(H_1), \mathcal{D}(H_2)) = d_0$$

- γ is a simple closed curve that is distance d₁ from D(H₁) and distance d₂ from D(H₁)
- *M^k* is the 3-manifold created by gluing *H*₁ to a copy of *H*₂ via *k* Dehn twists about *γ*

Theorem

(Y.,2012). Let $n = \max\{1, d_0\}$. Suppose $d_1, d_2 \ge 2$ and $d_1 + d_2 - 2 > n$. Then for $k \ge n + d_1 + d_2$, M^k admits a Heegaard splitting of distance at least $d_1 + d_2 - 2$ and at most $d_1 + d_2$.

Thank you!

