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This ranuscript is meant to accompany a series of leciures given at the
Korea Advanced Institute of Science and Technology in August, 1990. The
topic 1s the theory of sutured 3-manifolds, and the charge was to present
three lectures, from the basic material to the recent developments in the
area.

I've chosen here just those parts of basic 3-manifold theory necessary to
male sense of the development of sutured manifold theory, and merely cut-
lined a few of the proofs whose understanding is crucial to this development.
Complete proofs of these and other classical theorems of 3-manifold theory
can be found in the excellent texts of Hempel (He] and Jaco [J}.

The ongin of sutured 3-manifold theory can be traced back to Thurston’s
discovery of a norm on the homology of 3-manifolds [Th|. David Gabai
combined this discovery with Waldhausen's notion of a hierarchy of a 3-
manifold, producing the seminal work [Ga|. Many applications of sutured
manifold theory have been found; a partial list is given in the references.

‘The viewpoint of these notes in the “defoliated” viewpoint presented in
[Sc|, which is a good source for detailed proofs. -

1. J-manifolds

DerFmNITION: A 3-manifold M is a separable metric space in which every
pont has a neighborhood homeomorphic to an open set in R} = R?x[0, co).
A point in M which. has no neighborhood homeomorphic to R? is called
a boundary pomt of M. The set of all boundary ponts is a surface (2-
manifold) denoted 4.

tSupported in part by a National Science Foundation grant.

25

26 MARTIN G. SCHARLEMANN

1.1. THEOREM (Moise, Bing). Any compact 3-manifoid is homgomorphic
to a finite simplicial complex, unique up to homeomorpiusm and comimon
subdivision.

1.2. Suppose M is a compact 3-manifold and K is a finite simplicial

complex to which M is homeomorphic. Then XK suggests a natu;ai de-
composition of M, called a hendilebody decompesition, or a ball-rod-plate

decomposition (See Figure 1)

Figure 1

The set of balls (or 0-handles), °M, 1s a regular neighborhood in M of the
set of vertices of K. So "M is a finite union of 3-balls in M.

We can assume that each edge in K restricts in M —~ °M to an arc whose
ends lie m 8(°M). ‘This arc has a regular neighborhood homeomorphic to
I'x D?, with &I x D* C 8(°M). This regular neighborhood is called a rod
(or 1-handle). Let ‘M denote the union of "M with a 1-handle at each edge.

By choosing M close enough to the 1-skeleton of X we can assun‘ae t}mt
each Z-simplex in K restricts in M — ‘M to a disk D?. Squch a dlsk1 has
a regular neighborhood homeomorphic to D? x I, with 0D* x [ C (M.
This regular neighborhood is called a plaie (or 2-handle), and again denote
by *M the union of M with a 2-handle at each 2-sunplex.

Finally, M - 2M is a collection of 3-balls, called 3-handles, one in each
3-simplex. , :

1.3. An orientation on a simplex is a choice of ordering of its vertices,
up o even permutation. A vertex vy of an s-simplex ¢ and an orientation
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[r| = fv1,...,v,| of its opposite face 7 in o determine an orientation on &
by just appending: [¢} = [vgvi,...,vs|. In this case we say the orientation
fr| is wherited from {o|. If T is a 2-sumplex of a triangulated 3-manifold M,
either T lies in @M or T is the face of exactly two 3-simplices. If orzentations
on the 3-simplices can be chosen so that the induced orientation on each
interior 2-simplex is never consistent, we say that M is ementable and the
choice is an erieniation.

Henceforth we’ll consider only orientable compaci 3-manifolds, though
this restriction isn’t always necessary. This is equivalent to requiring that
A be a solid kandlebody, that is, *M is homeomorphic to the regular neigh-
borhood of a 1-complex (graph) in R®. (See Figure 2}

Figure 2

1.4. It's easy to see that for any compact orientable 3-manifold A, A —
M is also a solid genus g handlebody. This gives the remarkable description:

THEOREM. Any compact ortentable 3-manifold is the union of two solid
handlebodies aiong their houndary,

This description of M is called a Heegaard splitting of M and has moti-
vated quite a bit of research on 3-manifolds. But it’s not used here, and we
won't pursue it.

2. Submanifolds and general position

2.1. A submanifold S of a 3-manifold M will always mean a proper PL
submanifold. PL means there’s a simplicial subdivision of Af so that Sis a
subcomplex. Proper means that M NS = 45 and for any compact K C M,
K5 is also compact. If 5 is a I-manifold then a regular neighborhood n(5?)
of § is homeomorphic to § x D? If § is a 2-manifold, 7(S5) is homeomorphic
to §x I, and we'll denote the image of 5% 8I by p(5). Bach simplex 71in §
15 the face of two different 3-simplices of M. Suppose orientations are given
on § and M. The 3-simplex of M whose orientation is consistent with the
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orientation on 7 we'll say is on the positive side of §. The copy of §in In(5)
lying on the positive jresp. negative| side will be denoted Sy [resp. S_|. A
good way to picture the orientation is by the induced normal orientation:
pick the normal direction to S which points into the negative side from the
positive side, :

Any two submanifolds of a 3-manifold M can be jiggled slightly to inter-
sect in a particularly nice sa‘y. Any pair of lines in 3-space may be made
disjoint by moving them very slightly. Similarly a line and a plane may be
made to intersect in at most a point by moving slightly, and two planes may
be made to intersect in a line. The situation is similar for submanifolds of
3-manifolds: ¥ S, T ¢ M are submanifolds of dimension & and £ respec-
tively, then after a slight movement of § or T we may take SN T to be a
manifold of dimension £ +£ — 3. In other words, if S and T are i-manifoids,
they can be made disjoint. If dim{S} = 1 and dim(T") = 2, then they can
be made to intersect in a discrete set of pomts. If dim(S) = dim(T) = 2,
then ST can be made to be a 1-manifold, i.e., a union of arcs and aircles.
In these cases, § and T are said to be in generol position. The number of
components of 5N T is denoted }5N T

2.2. A circle or proper arc - in a surface S is called messential if 5~
has two components, at least one of which is a disk. Otherwise v 15 called
essential. If T is a proper compact 1-submanifeld in a surface S, and some
cirele component of T" 1s inessential, then there is a component bounding a
disk in S which 15 disjoint from I'. This component 15 called an innermost
circle of T' and the disk it bounds 1s an innermost disk. Similarly, if there's
an inessential arc in I' then there’s one for which the disk it cuts off from §
is disjoint from I'. This is called an outermost are of [ and the disk it cuts
off is called an outermost sector. (See Figure 3).

2.3. Suppose § and T are a pair of surfaces in general position 1 a
compact orientable 3-manifold M, and SN T contains a closed component
which is inessential in §. Then it contains an innermost inessential circle.
cutting off a disk D in § which is disjoint from T. Let (D} = D x I be a
relative regular neighborhood of D, so that 8D x I € T. Then the surface
T = [T — (8D x D}U (D x 8I) 1s said to be obtamned from T by 2-suryery
glong D). See Figure 4. Note that the Euler characteristic x{T*) = x(T)+2,
since an annulus (x = 0) had been replaced by two disks (each with x = 1).



LECTURES ON THE THEORY COF SUTURED 3-MANIFOLDS 29

Mareover [SNT'| < |SNT|. If 8D is essential in T then ' contains no new

2-spheres.
outermost sector
| 74\

innermost disk

Figure 3

5>
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¥
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A similar construction can be made on an messential outermost arc v of
SAT in T. The new manifold T* has [SNT'} < |SNT} and x(T") = x(T)+1,
but 8T < 8T. If ~ is essential in T, T contains no new 2-disks. See Figure 5.

3. Connected sums

Suppose M; and M, are two onented S-manifolds, and By, B, are two
3-balls, with B; C M;. Let M{ and M} be the 3-manifolds obtained by
removing the interiors of the B; and MM, the 3-manifold obtaned from
M} UM} by identifying 881 and 8B, via some orientation reversing homeo-
morphism. Any two orientation preserving imbeddings of the 3-ball mn a
3-manifold are isotopic, and so are any two onentation reversing homeomor-
phisms of the 2-sphere, so this operation is well-defined. The orientations of
M; and M determine an orientation on M. Note that always M = A #53

3.1. DEFINITION: A 3-manifold M is prime if whenever M = 3/ 1A,
one of the M; is §%. A non-prime 3-manifold is sometimes called a composite
manifold. Suppose M' is obtained from M by removing the interior of &
%-balls. We say M' is a punclured M. Unless M = SPand k=1, M is
never prime. Indeed, M’ = M#£k(B*).

EXAMPLE: It is a theorem of Alexander that any imbedding of 5% in §°
divides S* into two 3-balls. Hence §° is prime.

EXAMPLE: S2 % §! contains an imbedded 2-sphere S* x {pomt} not
bounding any 3-ball, yet it’s prime. But thus is the onfy example of a prime
orientable 3-manifold containing a 2-sphere not bounding a ball. Indeed,
consider any sphere S in a connected orientable 3-manifold A{.

If M — (S has two components M] and M3, then M = Mi# M, where
M; is obtained from M by attaching a 3-ball. i neither M!1s a 3-ball, then
M is not prime. :

If M! = M — g(S) is still connected, then let @ be an arc M' from one
side of n(S) to the other. Then n(5) Un(a) is just the manifold obtamned
from S? x St by removing a 3-ball. Let M] = M’ —g(a), and M) be the
manifold obtained by attaching a 3-ball to SM}. Then M = Mj#3® x 5%
Hence if M is prime, M{ is a 3-ball and M = §% x §%.

We say that a 3-manifold is irreducible if any 5% im it bounds a 3-ball.
The following theorem shows that it’s often reesonable to restrict interest
only to irreducible 3-manifolds.
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3.2. THEOREM. Any compact connecied orientabie 3-manifold can be
written in a unique way as the connected sum of a finite number of prime
3-manifolds.

Proor: The proof consists of two parts.

Existence of a prime decomposition {(Kneser): The idea, due to
Kneser, is that there's only room for a finite number of imbedded 2-spheres
n a given compact 3-manifold before some pair of 2-spheres is parallel (i.e.
the region between them is the product §2 x I}, To see this, choose a fixed
trniangulation of M and consider the associated ball-rod-plate decomposition
of M. A finite collection § of disjoint 2-spheres in M can be put 1n general
position with respect to this structure. In this context, this means that

a) S is disjoint from the 3-handles (so it lies in *Af)

b) S intersects each plate D* x I in a finite number of disks parallel to
D? x {0}

c) 5 intersects each rod D? x I i I" x I, where I" 1s a finite collection
of arcs in D?

d) S intersects the boundary of each O-handle in a set of simple closed
curves.

The proof proceeds in two steps: First isotope S to minimize the size of
each collection in b)-d). Then observe that in each 0, 1, or 2-handle H
most components of § N H must be parallel in H. (It’s helpful here to first
reduce to the case in which §01 %\ is a set of disks.) Indeed the number
of possible pairs of adjacent components of S H that are not parallel in
H has a maximum determined only by the triangulation, not by S. ¥ § is
large enough, at least one adjacent pair of spheres in S can be found that
contains none of the bad components in any of the handles, so these will be
parallel in M.

Uniqueness of the prime decomposition (Milnor): We want to
show that if M = My #Madt- - # My = Ny#ENodt - # Ny, where each M;
and each N; is prime, then & = ¢ and, after a permutation, M; = N;.
To simplify things a bit, we'll assume that no N; is 5? x S, so each NV
is irreducible. Let S be a sphere in M chosen so that one component of
M ~ § 15 a punctured M;. K § is disjoint from some collection T of spheres
decomposing Ny#Ny# - - - #Ny, then, since any sphere in N; bounds a ball,
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it would follow that each component of M — 5 is a punctured sum of N;'s.
Since My is prime, in fact My would then be homeomorphic to one of the
N;'s, completing an inductive step.

Thus it suffices to show that S is disjoint from some collection T of spheres
decomposing N #Nadk -+ #N;. So assume T has been chosen to minimize
I$NT). ¥|SNT|+#0,let D be an innermost disk cut off by Tin 5. 8D
divides some component T} of T into two disks E and B, each disjoint from
D. The component N} of M — T in which D lies is a punctured ;. Since
Nj is prime, one of the spheres obtained by 2-surgery on T; along I bounds
a possibly punctured sphere in N}. Replace T; with the other sphere. See
Pigure 6. This reduces |SN T}

new
sphere

Figure 6

REMARKS: It's not true that an automorphism of a composite 3-manifold
15 necessarily isotopic to an automorphism that preserves the connected sum
decomposition. : .

The following major theorem of Papakyriakopolous gives a simple crite-

rion to detect reducibility:

SPHERE THECOREM. K M 15 irreducible then wo( ) 15 tnviad,

4. Incompressible surfaces and hierarchies
As before, M is a compact orientable 3-manifold.
4.1. DEFINITION: A surface (5,88) C (M,0M) is compressible if either
a) S is a sphere bounding a ball in M or



LECTURES ON THE THEORY OF SUTURED 3.-MANIFOLDS 33

b) There's a disk D in M so that D = DN S is an essential simple
closed curve in 5.

Otherwise § 1s incompressible.
4.2. DEFINITION: § 15 8-compreassible if either
a) 5 is a disk and 85 C OM bounds a disk I) in 8M such that SUD
bounds a ball in M or

b) The}-e"s adisk Din M sothat DNS=8DNSisa single essential
arc in § and 8D — § is an arc in M.

Otherwise S 1s -fncompressible.
If OM is compressible we say that M is d-reducible,

2.3 explains why we are interested in compressibility. If 5 satisfies 4.1b)

or. 4.2b) then it may be altered by a 2-surgery into a simpler surface. (See
Figures 4 and 5).

4.3. LooP THEOREM (Papalyriakopolous). If § is incompressible then
Ty (S} e w1 (M) is injective,

4.4. A non-separating surface (5,8S5) C (M, 8M) is & surface such that
M — 5 has no more components than M.

’EE‘HEOREM. If a compact orientable 3-manifold M contains a non-sepa-
rating surface, then it contains an incompressible, 8-incompressible surface,

E_’RPOF: Pick a non-separating surface of highest possible Euler charac-
teristic x. Any compression or 8-compression would give a non-separating
surface of higher y. g

4.5. It requires a bit of algebraic topology to show that following:

'I_‘I{EOREM. If a compact orientable 3-manifold M contains no nen-sepa-
rating surface, then OM is a union of 2-spheres.

In particular, if M is prime, either M contains a non-separating surface
or each component of M is either closed or 2 3-ball.

,416' DEFINITION: An irreducible compact orientable manifold M con-
taining an incompressible surface is called a Haken manifold.

47 Suppose § C M is an incompressible surface. Let M' be the manifold
ob’ta_.med fr’om M by removing an open regular neighbortood of §. We say
M" is obtained by decomposing M along 5. We write M NV
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PROPOSITION. M’ is reducible if and only if M 1s reducibte.

PROOF: Suppose T is a reducing sphere for M' C M. 71 is not a
reducing sphere for M then it bounds a 3-ball in M, but not in M, s0 §
must lie mside the 3-ball. But any surface in a 3-ball s compressible by
Van Kampen’s theorem and 4.3.

On the other hand, suppose T is a reducing sphere for M, chosen to
runimize |[SN T} ¥ SN T = 0 then T lies in M, so M’ 15 reducible.
Otherwise, consider an innermost disk D cut off by ST T. Since 515
incompressible, 8D bounds a disk F in 5. T DUE bounds a ball in A",
then E could be isotoped just beyond D to reduce |SNT|. Otherwise DUE
is a reducing sphere for M;. B

4.8. DEFINITION: A partial hierarchy for M 15 a series of decomposiiions
3 ) Sia o .
M S, My R N M; = ... such that each Si 1s incompressible in
M.

4.9. From 4.4 and 4.5 we see that any partial hierarchy can be extended
so long as OM, is not a union of 2-spheres. Moreover, to check whether
M is irreducible, it suffices to check any 3-manifold 1n the decomposition.
Much deeper is the following

THEOREM. If each §; is chosen also to be J-incompressible, then any
partial hierarchy of M has finite length.

The proof is analogous to that of 3.2. Instead of a bound on the num-
ber of spheres in M, there’s a bound on the number of incompressible,
H-incompressible surfaces in M.

When we can extend a partial hierarchy no further, 1t follows from 4.5 that
GML, is a union of spheres. In this case we say M B, My LR Ay
is a hiererchy for M. From 4.7 it follows that M is irreducible if and only
if M, consists of 3-balls.

The existence of hierarchies for 3-manifolds 1s a surprising analogue of a
well-known process on surfaces. Figure 7 shows a “hierarchy” for a genus 2
surface. Hierarchies have been very useful in 3-manifold theory. Theorems
about Haken manifolds can often be deduced by reconstructing M from 3-
balls via its hierarchy. Sutured manifold theory is one example of this idea,
but with attention paid to orientation during the hierarchy.
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Figure 7

5. Homology in M and the Thurston norm

Henceforth we will assume that our manifolds are not only compact and
orientable, but also irreducible and oriented. Any element in Ho(M,0M) is
the fundamental class of some imbedded non-separating surface (5,858) C
(M,8M). The fundamental class of a connected imbedded surface in M is
trivial in Hp(M,0M) if and only if S 1s separating, So the homology of M
carries very specific information about non-separating surfaces in AJ. This
connection between the homology of M and surfaces in M was exploited by

Thurston to put a {pseudo-)norm on the homology of any compact orientable
rrreducible 3-manifold [Th|. Here's a bref review:

5.1. DEFINITION: a) For S a connected orientable compact surface, de-
fine x—(5) = max{0, ~x{5)}. That is, Xx-{5) is —x(5) unless § is a sphere
or a disk, in which case x.(S) = 0.

b} For § not necessarily connected, define x-{5Y = S {x-(5) ] Sia

component of 5. Equivalently, —x-(S) is the sum of the Euler character
istics of the non-simply connected components of S.
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¢} For N a subsurface of M, and o m Ha(M,N), define the Thurston

norm of a to be

s() = min{x—() | (5,08) € (M, I) with [5,85] = o}

5.2. The Thurston norm has four important properties:

THEOREM.

i) z(a) is always a nan-negative integer.

i} z(pe) = |plz(e) for any nteger p.

i) z(e+ f) < z(a) + z(B) N
111:)) :;’(or anf «, f there is an integer k 50 large that for all positive integers

1
£
s(a+ (k +£)8) = ol + k) + &2(B)

PROOT: i} is immediate since x_ is aever negative. oy o

i) is equally easy in one direction: Since pe can be re;zesir;m) N
parallel copies of any surface representing a, we have z(pa} < ipl: ‘ ‘T i}

For the other direction, let S be an oriented s%rface repres;n 1ni pb‘;
choose a base point zq in M — S, and define a function f: M — -wat.;,l 5
setting f(z) to be the intersection mumber of an arc fI'OI;i. zg ;ot Ox ax; ; the{.‘
Each f~4(i),1in Z,, 58 cobordism from one subsurface 55 ; gl SO,
Siz1. Hence for each i in Zp, pa = sl = }:{[S’,] [i € rlzlen | '{‘,9;) ©
p{a ~ [8i]) = 0. Since H;(M, N} has no torsion, [5i = a. X— >
z(a) so z(pa) = Tix-(Si) € Zp} 2 pz(a). , _; S—

iii} The idea here is to take surfaces S and T so that [5, E'] = ,su;face -
8, x-(8) = z(a), x-(T} = z(f) and construct from t. ertr;; a.done -7
répresenting a+ 8 Hx(U) = x-(8) + x-(T) we will be 0{.5 o
construction of U is accomplished by taking the double c.urue sum S ane
T defined below. By doing 2-surgeries on nutesnosjt secr.o.rs and nl*;m them,
di,sks of SNT in § and T we may, without increasing their xW,T ah er thet
so that any component of SN T is essential m both § and T Then apph
5.4 below.

iv) This is a formal consequence of 1)-iii). See [Sc, 1.5].
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5.3. DEFINITION: Suppose S and T are oriented surfaces in general po-
sition in M. Then a neighborhood of I' = $ N T in M imtersects S U T
m the product of T" and the left side of figure 8 (normal directions shown).
The double curve sum S 44 T of S and T is defined as the oriented surface

obtained by replacing SUT in this neighborhood with the product of I" and
the right side of figure 8.

Figure 8

5.4. LEMMA. If every component of I' = S N T is essential in § and in
T, then X.(8) + x(T) = x_(S +q4 T).

PROOF: The construction of the double curve sum invoives re:;oving a
subsurface of S U T and then gluing it back in differently, so the operation
preserves Euler characteristic. It suffices then to show that no new disks or
spheres are created. Any disk or sphere in S+, T either lies entirely in 9,
entirely m T, or contains bits of both. In the latfer case, the bits are glued

together along components of I'. An cutermost arc or innermost circles of
I’ would be inessential in either § or T

5.5. DEFINITION: An oriented surface (5,08) is taut i,
a) 5 is mncompressible and
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b} S has minimal y_ of all surfaces representing [5, 85} 1 Hz(M,71(35)).
That is, for z the Thurston norm on Ho (M, n(885)), we have z{[5]) = x-(5).
Note that 5.5a) follows from 5.5b) unless S is a torus or an annulus.

Figure 9

6. Sutured manifolds

6.1. DEFINITION: A sutured manifold {M,-y) is a compact onented 3-
manifold M together with a partition of M = R, U, BE_ as the umon
of two surfaces Ry and R_ along their common boundary, a collection of
simple closed curves ~, called the suiures. Ry is orlented so that its normal
vector points outward and K. so it points mward. See Figure 9.

ReMARK: The orientations of Ry induce a common orientation on 7.

Suppose (S,85) C (M,8M) is an oriented surface 1n a sutured manifold
(M,v). Then the orientation of S induces orientations on Sy C an(5).
Let M’ be the manifold obtained by decomposing M along 5. Then any
point in OM' was either a point n OM or in 5:. Hence any poinif in
OM" which is neither in 853 nor i v has a natural normal orientation.
¥f the normal orientations on both sides of a point in 85, agree, use that
normal orientation also at that point. Otherwise, regard the point as lying
in a suture. In this manner M’ becomes aiso a sutured manifold with a
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set of sutures /. We say that (M) = (M'. 4" is a sutured manifold
decompesition. This operation is shown schematically one dimension lower
in Figure 10, a decomposition of an annulus by an oriented are.

N A O

N

Figure 10

6.2. PROPOSITION. Suppose (M,7) =, (M’ 4"} 15 a sutured manifold
decomposition. Push Ry slightly mto M rel~ = 8Ry. Then the subsurfaces
w nto which +' divides OM" are given by R = Ry +4 S.

PROOF: R, is mostly the union of Ry and 5. To verify the proposition
1t suffices then to just look at the local picture near 85. §

In this way, any hierarchy M =4 My 22 ... 3% M. of M gives rise to
a sutured manifold hierarchy (M,~) 2 (M1,71) Sy B, (Mnivn)

6.3. DEFINMITIONS: A sutured manifold (M, ) is taut if M is irreducible
and R4 and R_ are both taut surfaces in M. That 1s: each R. is incompress-
ible, and there is no surface (T,87) C (M, 8M), with x.{T) < x_(R+),
T = «, and [T,y| = [Ry,v] in Ha(M,n(7)). Note this implies that
X—{R+)=x_(R.).

A tfaul sutured manifold decomposition is a sutured manifold decomposi-
tion (M, ) =, (M.~} such that both {Af, v) and (M’,+") are taut sutured
manifolds.

A taut sufured manifold hierarchy is a sutured manifold hierarchy consist-
ing entirely of taut sutured manifoids. Note that then (M,,~,) must be a
collection of 3-balls with a single suture on each component.

Here are the three main theorems in sutured manifold theory:
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6.4. THEOREM. If (M, ) 1s a taut sutured manifold and o € Ha(M, OM}
1s non-trivial, then there is a surface (S,85) C (M, M) such that {5,85] =
o and (M, v) N (M',+'} 15 a taut sutured manifold decomposition.

PRoor: The idea is to exploit 5.2 iv). Let f be the fundamental class
{Ry,BR.| 1n Ha(M,n(7)). Then choose k so large that z(a + (k +1)8) =
z(a + £B) + z(B). Then choose S to be a taut representative of the class
a4 kf. For (M',+'} the result of this decomposition, we have x.(Ry) =
X_(8) 4+ x_(Rs) = (e + £B) + z(B) = z(a + (k + 1)) = 2[Rus 7'}, 50 Ry
are norm-minimiziag,.

On close inspection, this argument makes little sense. For example, o
15 in Ho{ M, M) not Ha(M,n(7)), whereas § is in Ha{M,1(7)}) and indeed
becomes trivial in Ho(M,8M). So there is no way to make sense of the term
a + k. This difficulty can be overcome, e.g. by generalizing the Thruston
normn to “F-norms”, but the proof becomes quite technical. §

6.5. THEOREM. Any taut sutured manifold has a taut sutured manifold
hierarchy.

PROOF: It seems that this should be immediate from 4.9 and 6.4. The
difficulty is that the surfaces S ansing in 6.4 may be d-compressible, so in
principal a partial hierarchy using such surfaces might extend indefinitely.

This probiem is overcome by defining a notion of the “complexity” of a su-
tured manifold that is reduced during a sutured manifold decomposition and
which, when trivial, terminates the hierarchy. The details are complicated.
See [Sc, §4| or [Ga, §41. §

6.6. THEOREM. Suppose (M,v) 1s a sutured manifold and (M, ) =,
(M, +") is a sutured manifold decomposition. K (M, +') 1s taut, then so 13
(M, 7).

ProOOF: The proof of this is a very useful exercise for the reader. You
should discover during the proof that the theorem is false as stated. There
are two types of exceptions: If A is a solid torus whose boundary contains
no sutures, then A is not taut, yet decomposing along a mendian disk gives
a 3-ball with a single suture, which is taut. Also you must assume that no
component of 85 bounds a disk, either in 5 or in 3R, ff
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6.7. COROLLARY. A sufured manifold hierarchy is taut if the [ast term
(M, vn) 18 taut.

WARNING: Owing to the exceptions mentioned in the proof of 6.6, there
are nunor side conditions on the hierarchy that must also be satisfied.

7. Method of application

The references contain many applications of this theory. The philosophy
of each proof 1s roughly the following: We wish o know that a particular
surface § in a 3-manifold M is taut, Somehow we associate to § C M a
different situation: a surface T m a 3-manifold N which we know is taut,
Using 6.5 construct a taut sutured manifold hierarchy for N. Use this hier-
archy to induce a sutured manifold hierarchy on M. From the tautness of
the last term (N, 7,), deduce that the last term in the hierarchy of M is
taut. Then apply 6.6 to deduce that S is taut.

Here are two examples.

7.1. The first example reflects well the philosophy of such proofs and is
fairly elementary. The theorem is due to Gabai [Ga, 6.13], but we offer here
a “defoliated” proof, which arose in a conversation with Darren Long.

Suppose p © M — M is a k-fold covering map of a closed oriented 1r-
reducible 3-manifold M. There is a transfer map tr : Hy{M) — H{M)
defined as follows: choose triangulations for M and M so that p 15 simpli-
cial. For any o in H;(M) choose an i~cycle { representating it. Let ir{a) be
the homology class represented by p~!(¢). Note that p.(tr(a)) = ke.

THEOREM. For z and T the Thurston norms on Hy{M) and Hg(j}—f) re-
spectively, i(tr(a)) = kz(a).

PROOF: Let S be a taut representative of @ in M and let § = S
Sinece x{S} = Ax(S} we have x(tr(a)) < kz{w). To prove equality, we only
need to show that S is taut in A1,

Let (M,v=8) gy (My, 7 = 0) R N (fvf,,,-yn)ﬂbe a taut sutured
manifold hierarchy for M. Then for 1 <1 < , iet 5 = “”‘(.S‘) aild
Ef, = ““"(I'VI) Then it’s easy to see that {M, p) 2= (.Ml,ﬁ}} voo Bn,

(M,,, P (7n)) 1s 2 sutured manifold hierarchy. But since M, consists of
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balls with a single suture in each component and M, 1s a cover of Mo,
(Mn,p Hy n)) is also taut. Hence S is tant. [

The second application comes from knot theory, but requires a preliminary
general theorem on “torus fillings”.

7.3. Suppase M is a 3-manifold and 7 is a torus compenent of 3M. Let
o be an essential simnple closed curve in T. Then there is a homeomorphism
®:0D% x §' — T, well-defined up to 1sotopy, such that o(8D0%) = . The
manifold M(o) obtained by attaching D x §! to M via wis a filling of AL
ai T with slope o.

A connected 3-manifold N with torus boundary component T' C JN is
called a J-cobordiam on T if Hy(N,ON ~ T) = 0. In other words, any
surface (5,85) C (N,8N — T) separates. It's a consequence of Poincare
duality that genus(dN — T} < 1. I genus(BN — T) = 1, then N has the
rational homology of T x I.

THEOREM (Gabai). Let (M,v} be a connected taul sutured manifold
with v # 0. Suppose T C 8M is a torus such that v N T = § and the only
J-cobordism on T contained in M is T x I. Then there is af most one slope
o for which {M(a),~) is not taut.

PrROOF: Special case: M is itself 2 J-cobordism on T.

Then M is T x I, and the sutures ~ lie in the torus T' = M — T
Since (M, ) is taut, v consists of parallel essential curves in T' M {a) s
just a solid torus, so (M(c),) is taut unless the anauli Ry =T~y are
compressible. But this will occur oniy for the slope o given by the annuli +
T

General case; If M itself is not a J-cobordism on T, then construct a taut
sutured manifold hierarchy of (M, -y), using always surfacés disjemnt from T,
until we reach a sutured manifold of the form (Mo, ~n) with Ha{ M, M, —
T} = 0. Since M, is a J-cobordism on T, M, =T x I Thetorus 7" =
M, — T arose from sutured manifold decompositions of A, so it must
contain some sutures. From 6.7 (M(o4,v) is taut if (Ma(0),vn) 15 taut.
Now just apply the special case to M. § -

7.3. Any knot L in $° is the boundary of some connected orientable
surface 5, called a Seifert surface of the knot. The genus of the knot 1s the
mimnimal genus of all Seifert surfaces. Figure 11 shows a genus one Seifert
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surface of the trefoil knot.

/

Figure 11

Suppose kp and &; are two knots in §°, separated by = 2-sphere. Denocte
ko U ky by K. Suppose b: I x I — 5% is an imbedding such that 6~ (ky) =
{0} x I and 67*(k1) = {1} x I. Then the knot ' obtained from K by
removing b(8I x I) and replacing it with b(J x 8I) is called the band sum
of ky and ki, and is denoted ko#yk;. See Figure 12.

Figure 12

THEOREM (Gabai, Scharlemann). genus (ko#pky) 2 genus(ke) +
genus (ky }.

PROOF: The proof given here 1s essentially Gabai’s. Let L be a small
circle that links the band, 1.e., L bounds a disk D intersecting b(I x I) in
some {pomnt} x I. Let M = §* — (K’ U L). M is irreducible and has only
torus boundary composnents, so we may view M as a taut sutured manifold.
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It’s not hard to show that M satisfies the J-cobordism condition of 7.2 for
J-cobordisms on dnp(L). In M, K' bounds an orientable swface. Let § be
one of mmimal genus in M. § is split by D into Seifert surfaces for &g and
k1, so genus (S) 2> genus (k) + genus (k:).

Let M; denote the taunt sutured manifold obtained by decompesing M
along S. It’s not hard to see that the manifold Ai(c) obtained by filling in
a solid torus 8y(L) with slope 8D contains a reducing sphere. In particular
Mi{7) is not taut. Now fill in dn{L) with a meridian of p(L). By 7.2 the
sutured manifold M;(r) is taut, so S iz also of mimimal genus for A7 in
$P—-K'=M(r). 1

7.4. This has an important corollary. The oniginal proof of this corollary,
whith predated sutured manifold theory, required a complicated combina-
torial argument.

COROLLARY. If ko#tpky 18 the unknot, then kg and &5 are the unknot,
and the band crosses the 2-sphere separating kg from ky exactly once.
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