COMPARING HEEGAARD SPLITTINGS OF NON-HAKEN
3-MANIFOLDS

HYAM RUBINSTEIN! AND MARTIN SCHARLEMANN?

ABsTRACT. Cerf theory can be used to compare two strongly irreducible Heegaard
splittings of the same closed orientable 3-manifold. Any two splitting surfaces can
be isotoped so that they intersect in a non-empty collection of curves, each of
which is essential in both splitting surfaces. More generally, there are interesting
isotopies of the splitting surfaces during which this intersection property is pre-
served. As sample applications we give new proofs of Waldhausen’s theorem that
Heegaard splittings of S are standard, and of Bonahon and Otal’s theorem that
Heegaard splittings of lens spaces are standard. We also present a solution to
the stabilization problem for irreducible non-Haken 3-manifolds: If p < ¢ are the
genera of two splittings of such a manifold, then there is a common stabilization
of genus 5p + 8¢ — 9.

1. BACKGROUND

In this paper, all 3-manifolds are assumed to be orientable and, except for han-
dlebodies, to be closed as well. Much of the machinery developed works also for
compact orientable manifolds split into compression bodies, but the arguments are
more delicate and will appear elsewhere. A handlebody H is the boundary sum
of a finite number of copies of S x D?. Alternatively H is a homeomorph of the
regular neighborhood of some finite graph in R®. The image = of the graph , to
which H retracts, is called a spine of H. The retraction restricts to a map dH — =
whose mapping cylinder is itself homeomorphic to H. A properly imbedded essen-
tial disk in H is called a meridian of H. A collection of meridians is complete if its
complement is a collection of 3-balls.

A Heegaard splitting M = AUp B of a 3-manifold consists of an orientable surface
P in M, together with two handlebodies A and B into which P divides M. P itself
is called the splitting surface. The genus of AUp B is defined to be the genus of
P. A stabilization of AUp B is the Heegaard splitting obtained by adding to A a

regular neighborhood of a proper arc in B which is parallel in B to an arc in P. A
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stabilization has genus one larger and, up to isotopy, is independent of the choice of
arc in B and is the same if the construction is done symmetrically to an arc in A
instead.

If there are meridian disks D4 and Dg in A and B respectively so that D4 and
0dDp intersect transversally in a single point in P, then A Up B can be obtained by
stabilizing a lower genus Heegaard splitting. We then say that A Up B is stabilized or
can be destabilized. If there are meridian disks D4 and Dg in A and B respectively
so that 9D 4 and dDpg are disjoint in P, then AUp B is weakly reducible. If there
are meridian disks so that 0D 4 = 0Dg, then AUp B is reducible. It is easy to see
that reducible splittings are weakly reducible and that (except for the genus one
splitting of S?) any stabilized splitting is reducible. It is a theorem of Casson and
Gordon [CG] that if AUp B is a weakly reducible splitting then either M contains
an incompressible surface, or A Up B is reducible. It is a theorem of Haken [Ha]
that any Heegaard splitting of a reducible 3-manifold is reducible and it follows from
a theorem of Waldhausen [W] that a reducible splitting of an irreducible manifold
can be destabilized.

This last theorem, that any positive genus Heegaard splitting of S? is standard, is
the deepest. (For an updated proof, see [ST2].) The viewpoint we adopt here easily
gives a new proof of this theorem (see 5.11). The other ingredient in our proof of
5.11 is the main theorem of [CG] which implies that any weakly reducible splitting
of S? is reducible. A few early lemmas here are easier to state if we know 5.11, so
we will put in [brackets] conditions which are not needed once 5.11 is known.

Any two Heegaard splittings of the same 3-manifold can be stabilized until they
agree but it is uncertain how many stabilizations suffice. For lens spaces, no stabi-
lization is needed [Bo], [BoO]. Our methods here give an easy alternative proof 6.3,
6.4. Examples exist [BO] for which one stabilization is necessary, and Johannson
has shown [Jo, 40.5] that if M is Haken, then the number of stabilizations needed
grows no more than polynomially with the genus of the two splitting surfaces. It
is a consequence of what we show here that for irreducible non-Haken 3-manifolds
the growth is linear. We suspect that this will generalize to Haken 3-manifolds as
well, and that it can be derived from the machinery used here, together with that
of [ST3].

I would like to thank the referee for several clarifying suggestions.
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2. MAIN RESULTS

In sections 3 through 5 we develop the underlying machinery. If P and @) are two
Heegaard splitting surfaces of the same closed orientable 3-manifold M then the
splittings determine “sweep-outs” of M by P x [ and ) x I. Generically, copies of
P and @) are transverse during the sweep-outs, but there are codimension one and
two sets on which they are not transverse. When P and () are strongly irreducible
splittings there is a structure on these strata, viewed as a graphic in [ x I. For M
irreducible and non-Haken, a Heegaard splitting is strongly irreducible if and only
if it is irreducible.

At the end of section 5 we begin to develop the topological consequences. First
we recover the main theorems already known for Heegaard splittings of non-Haken

3-manifolds:

Theorem 5.11 Any positive genus Heegaard splitting of S® can be destabilized.

Theorems 6.3 and 6.4 Any lens space has a unique irreducible Heegaard splitting.

This last result is an easy consequence of the following:

Theorem 6.2 Suppose X Ug Y and A Up B are strongly irreducible Heegaard split-
tings of the same 3-manifold M # S®. Then P and Q can be isotoped so that PN Q
is a non-empty collection of curves which are essential in both P and ().

This shows that P and () can be put into a useful position in M. One can also
find isotopies of P in M whose track across () contains useful information. This is
the content of the end of Section 6 through Section 7. The remainder of the paper
shows how to use the isotopy to produce a bound on the number of stabilizations
needed to make two splittings equivalent. The main technical result is this:

First define a spine of a closed orientable surface () to be a 1-complex in () whose

complement consists entirely of disks.

Theorems 6.5 and 8.1 Suppose X Ug Y and AUp B are strongly irreducible Hee-
gaard splittings of the same 3-manifold M. Then P and () may be put in general

position so that

(1) all but one curve in PN Q) is essential in both P and Q). The other curve, if

it exists, is inessential in both P and ().
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(2) for one of the splittings (say AUp B) there is a complete collection of merid-
ian disks A for A and B so that the I-complex QQ N (P UA) contains a spine
of Q.
This leads to the stabilization bound:

Theorem 11.5 Suppose X Ug Y and AUp B are strongly irreducible Heegaard split-
tings of the same 3-manifold M and are of genus p < q repectively . Then there is a
genus 8q+5p—9 Heegaard splitting of M which stabilizes both AUp B and X Ug Y.

Corollary 11.6 Suppose X Ug Y and A Up B are Heegaard splittings of the same
irreducible non-Haken 3-manifold M and are of genus p < q repectively . Then
there is a genus 8q + 5p — 9 Heegaard splitting of M which stabilizes both AUp B
and X Ug Y.

This bound is almost surely not the best possible. Two recent announcements of
better bounds are Lu [Lu], who gives 4¢ — 3 and Taimanov [Ta], who gives p + ¢.

However, the status of these proofs remains uncertain.

3. SWEEP-OUTS AND THEIR GRAPHICS

Suppose AUp B is a Heegaard splitting of M, and =4, =g are spines of A and B

respectively. We may as well take spines in which each vertex has valence three.

Definition 3.1. A sweep-out associated to the Heegaard splitting A Up B is a rel-
ative homeomorphism H : P x (1,01) — (M,=4 UZg) which, near P x 91, gives a
mapping cylinder structure to a neighborhood of =4 U Zp.

Given a sweep-out H and 0 < s < 1, let P; denote the splitting surface H(P X s),
P denote the handlebody H(P x[0,s]) and Ps, denote the handlebody H(P x [s, 1]).

If M = X UgY is another Heegaard splitting of M and () is in general position
with respect to =4 U Zp and the sweep-out H is generic with respect to (), then,
for small values of €, P, N @ is a (possibly empty) collection of meridian disks of A
and Psi_. N Q is a (possibly empty) collection of meridian disks of B. Generically,
P, N Q 1s a disjoint collection of simple closed curves in Q).

We are interested in analyzing intersection patterns which arise in simultaneous
sweepouts Ps, (); of M corresponding to different Heegaard splittings. Cerf theory
(see [C]) says that for generic sweep-outs, the interior of the square I x I = {(s,1)]|0 <

s,t < 1} decomposes into four strata:
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Regions:: The set of values (s,t) for which P; and @); intersect transversally
comprise an open subset of int(I x ). A component of this two-dimensional
stratum is called a region.

Edges:: The set of points (s,t) for which P; and @); intersect transversally
except for a single non-degenerate tangent point comprise a 1-dimensional
subset of int(I x I). A component of this 1-dimensional stratum is called an
edge.

Crossing vertices:: These are the points (s,?) for which P; and Q; have ex-
actly two non-degenerate points of tangency but are otherwise transverse.
Such points are isolated in [ x [.

Birth-death vertices:: These are the isolated set of points at which P, and
(Q): intersect transversally except for a single degenerate tangent point locally

modelled on P; = {(z,y,z)]z =0} and Q; = {(z,y,2)|z = 2* + y*}.

The set of edges and vertices form a 1-complex I' called the graphic in the interior
of I x I. An edge is adjacent to a region if its contained in the closure of the
region. Two regions are adjacent if there is an edge which is adjacent to both
of them. We similarly define edges to be adjacent if they terminate in the same
vertex. A crossing vertex has valence 4 in I', for it represents a point where an
edge in the graphic associated to one tangent point crosses an edge corresponding to
another. A birth-death vertex has valence two, with one adjacent edge corresponding
to a saddle and the other corresponding to a cancelling center. Locally there is
a parameterization (A, ) of (s,t)-space so that, if P; is {(x,y,2)|z = 0}, then
Q= {(e,5,2)]z = 2 + A+ iy + 4} (see [C, TL2))

The graphic I' naturally extends to a properly imbedded 1-complex in all of I x I:
A point (0,1), say, on {0} x I C d(I x I) represents simultaneously the spine =4 of
handlebody A (since s = 0) and the surface @;. Generically these are transverse,
implying that P. and (); are transverse for € small. There are two types of exceptions:
For finitely many values of ¢, =4 is tangent to (J; at a single point in the interior of
one of its edges. At finitely many other values of ¢, (J; crosses a vertex of =4. Since
each vertex of =4 is of valence three, this changes the number of intersection points
with =4 by £1. Call these non-generic points (and similar points on the other three
sides of I x I) boundary vertices of I'. For (0,%y) such a boundary vertex, consider
nearby points in the interior of I x I. As (); sweeps across the point a where =4

and (), are tangent, consider how (); sweeps across P, for small €. There are two
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nearby values {4 of ¢ so that P, is tangent to each of ();, at a single point. Between
the values t4, ); sweeps across the meridian of P. at a and these two values of ¢
are the first and last values for which (); intersects this meridian. At one of ¢4 the
tangency to P. is a center and at the other a saddle. In the graphic, this means
that the boundary vertex (0,%y) abuts two edges in the graphic I'. Similarly, a
boundary vertex corresponding to a sweep of (J; across a vertex of =4 abuts an edge
of I' corresponding to a saddle tangency of ); with P. near the vertex. The same
argument applies at each boundary vertex, so I' can be completed to a 1-complex
in [ x [ by adjoining all boundary vertices. We continue to call this 1-complex the

graphic I'.
4. ESSENTIAL AND INESSENTIAL CURVES OF INTERSECTION

Consider a region of I x I —I' as defined above. The collection of curves F; N Q)
is, up to isotopy, independent of the choice of (s,¢) in a given region and we’ll often
suppress the subscripts when they are clear from the context. Our first goal is to
find a region in which this collection contains curves which are essential in both P

and (). To that end we define certain subcollections of curves.

Definition 4.1. For (s,t) in a region of [ x [ —T', P and Q) intersect transversally
in a collection C of simple closed curves. Let Cp (resp. Cq) denote the set of these
curves which are essential in P (resp. Q). A curve ¢ in Cp is further defined to be
in C4 if it bounds a disk in () — Cp which, near ¢, lies in A. We similarly define
Cp CCp and Cx,Cy C Cq.

Definition 4.2. A curve ¢ € C is remote from ¢ € C in P (resp Q) if no component
of P—Q (resp Q — P) has both ¢ and ¢ on its boundary.

Lemma 4.3. If ¢ € C4 then ¢ bounds a disk in A. Moreover, if no curve in Cx
or Cy is remote from ¢ in P, then ¢ bounds a disk in A which intersects () only in

inessential circles. Symmetric statements hold for ¢ € Cg,Cx,Cy.

Proof. If the disk D which ¢ bounds in () — Cp has interior disjoint from C then a
slight push-off would be a disk in A — @) as required. Since int(D) is disjoint from
Cp at worst 1t intersects P in circles which are inessential in P.

Let ¢1, ..., ¢, be the components of int(D)N P that are outermost in int(D). Let
D;, E; be the disks bounded by ¢; in int(D) and P respectively. Then the desired
disk is £ = (D — U, n(D;)) Ui, E!, where E! is a copy of E; pushed into A in
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such a way that if £; C E; then E; is pushed slightly further into A than E}. The
interior of each E! intersects () only in curves which are remote in P from e, since
¢; separates them. Then F is a disk in A bounded by ¢ which intersects ) only in
curves parallel to curves of P N ) which are remote from ¢ in P and which bound

disks in P. If one of these curves is essential in () then an innermost such in F lies
mn CX U Cy. O

Corollary 4.4. If in any region both C4 and Cg are non-empty then A Up Bis weakly

reductble.

Lemma 4.5. Suppose Cp and Cq are empty and there is a meridian disk in A which
intersects () only in inessential circles. If A also contains an essential curve of ()
then AUp B is weakly reducible [or M is S®]. Symmetric statements hold for A
replaced with B, or for (A, P,Q) replaced with (X,Q, P) or (Y,Q, P).

Proof. Since Cp UCqo = ¢ any curve in P N () bounds a disk in both P and Q).
A standard innermost disk argument provides an isotopy of ) which makes P and
Q) disjoint. This isotopy affects neither the essential curve of ) lying in A nor the
existence of a meridian disk in A intersecting () only in inessential circles. After the
isotopy we conclude that ) must lie entirely in A and that A has a meridian disk
disjoint from ). Attach to B a maximal collection of 2-handles which d-reduce A in
the complement of (). The resulting 3-manifold B’ has boundary a surface P’ lying
entirely in either X or Y, say X.

If P" consists of 2-spheres, then M can be obtained from B’ by attaching some
3-handles, one of which must contain ) and hence all of Y. Since X is irreducible
it follows that the boundary of the 3-handle bounds also a ball containing B’, so M
has a Heegaard splitting of genus 0 and so is S°.

If P’ contains a non-spherical component then that component, since it lies in X,
must be compressible in X. The compressing disk can’t lie outside B’ by definition
of B’, so it must compress in B’. This implies that A Up B is weakly reducible
[CG]. O

5. LABELLING REGIONS OF THE GRAPHIC

Motivated by the above discussion, we label a region of I x I — I' according to
the following scheme. If C4 (resp. Cp, Cx, Cy) is non-empty we label it A (resp.
B, X.,Y). If Cp and Cg are both empty and A (resp. B) contains an essential curve
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of @ label the region b (resp. a) (sic) and if X (resp. ) contains an essential curve
of P label the region y (resp. x). Notice that no region can have both labels a and
b (or both labels = and y) since, if some essential curve of ) lies in B and another
lies in A then these must be separated in () by some essential curve from P N () so
Co would be non-empty. So the label a actually implies that some spine of () lies
in B, and similarly for labels b, 2,y. By Corollary 4.4 | if AUp B (resp. X Ug Y )
is strongly irreducible, no region can have both labels A and B (resp. X and V).
Finally, no region can have both an upper case label and a lower case label, for the
former implies that one of Cp or Cg is non-empty, while the latter assumes that both
are empty.

Consider how labels can change as we cross an edge in I'. Each such edge corre-
sponds to a non-degenerate tangent point between P and (), and crossing the edge
is equivalent to pushing P across () at that point. In particular, if the tangent point
is a “center”, a single circle of intersection, inessential in both P and () is either
created or destroyed, and there is no effect on the labeling. If the tangent point is a
“saddle” then there can be an effect on the labelling, for passing through the saddle
has the effect of banding together two curves of P N () into one, or vice versa.

To understand the effect of this move, suppose curves c¢p, ¢; of P N @ are banded
together to make the curve ¢. The “figure 8” component of P N ) containing the
saddle tangency has a regular neighborhood in P (resp. @) which is a pair of pants.
Each of the three boundary components of the neighborhood is parallel in P (resp.
() to one of ¢y, ¢; or ¢. So if ¢ and ¢y, say, are both essential in P and one bounds
a disk in A and the other in B, then AUp B is weakly reducible. Hence

Corollary 5.1. If, in two adjacent regions of I x I — 1T, both labels A and B (resp.
X and Y ) appear, then AUp B (resp. X Ug Y') is weakly reducible.

Similarly, suppose labels @ and b occur on opposite sides of the edge. This requires
first of all that Cp and Cg be empty throughout, so in particular ¢g,c¢; and ¢ are
inessential in both P and (). Secondly it requires that some essential curve of )
lies in A before passing through the saddle and a perhaps different essential curve
of @ lies in B after passing through the saddle. But if ¢y, ¢; and ¢ are inessential,
passing through the saddle has no effect on whether or not such essential curves
exist, so there must simultaneously be essential curves of () in both A and B, and

so an essential curve of P N Q) in ) which separates them, contradicting Co = ¢.

We have then:
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Corollary 5.2. In two adjacent regions of [ x I — 1T, labels a and b (resp. x and y)

cannot both appear.

We have earlier noted that no region can have both an upper case letter and
a lower case letter. But, under certain circumstances, adjacent regions may have

labels of different cases:

Lemma 5.3. Suppose, in [ x [ =T, a region labelled A (or B) is adjacent to a region
labelled with a lower case letter. Then the edge represents a saddle tangency in which
a band which is essential in P and inessential in () is attached to an intersection
curve which is inessential in both P and Q. (And symmetrically, when (A, P,Q) is
replaced with (X,Q, P) or (Y,Q, P).)

Proof: In the region R; labelled with a lower case letter, all intersection curves are
inessential in both surfaces, whereas in the adjacent region R4 labelled A there is at
least one intersection curve which is essential in P (and it is inessential in (). So the
edge must represent a saddle tangency. As described above, the saddle tangency
corresponds in each surface to a band move which divides a single component ¢
of into two components, ¢y and ¢;. If ¢ and ¢; were curves of intersection in the
region R, then they would be inessential in P and so ¢ would be also. Since in fact
an essential curve is created passing from R; to R4, it must be that ¢ is a curve
of intersection in the region R; and ¢y, ¢y curves of intersection in the region R4.
Furthermore, at least one of ¢g, ¢y is essential in P and inessential in (). But since

¢o and ¢; are made by a band move on an inessential curve, they must be parallel

in both P and (). O

Corollary 5.4. Suppose, in [ x I —1', a region labelled A is adjacent to a region
labelled b. Then either A Up B is weakly reducible [or M is S®]. (And symmetrically,
if (A, D) is replaced with (B,a) or (A,b, AUp B) is replaced with (X,y, X Ug Y) or
(Yo, X UgY).)

Proof: Using the notation of the previous proof: since Cqg is empty in R; and all
three curves ¢, ¢g, ¢; are inessential in (), it follows that Cg is empty in 4. Then 4.3
applied in R4 shows that ¢y bounds a disk in A which intersects () only in inessential
circles. The result then follows from Lemma 4.5 applied in R;. g

We have used upper and lower cases of the same letter because of the similarities

of 5.1, 5.2, and 5.4. To further exploit this similarity we will let A mean a label
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which could be either a or A, and similarly for B, X, and Y. For example, 5.1, 5.2,

5.4 can all be summarized by:

Corollary 5.5. If labels A and B appear in adjacent regions of [ x I —1" then either
AUp B is weakly reducible [or M is S®.]

Now make a similar analysis around vertices in I'. Consider first a birth-death
vertex. One of the two edges incident to any birth-death vertex corresponds to a
center tangency between P and () and we know that on opposite sides of such an
edge labels don’t change. So an edge incident to a birth-death vertex has the same
labels on both sides.

Now consider a crossing vertex v in [' at which four edges meet. The four edges
divide a neighborhood of v in I x [ into four quadrants, each lying in some region.
If an incident edge corresponds to a center tangency, so will the edge opposite
to it across v. Such edges will have the same labels on both sides, so they are
really invisible in our labelling scheme. Suppose both pairs of opposite edges at v
correspond to saddle tangencies, and the two saddle points lie on different singular
components of P N () at v. Then the arguments above apply separately across each
edge. In particular, if both labels A and B (resp. both labels X and Y) appear in
quadrants of such a vertex then either A Up B (resp. X Ug Y) is weakly reducible
or M is S3.

The remaining case is that the two saddle points lie on the same singular compo-
nent of P N () at v. The behavior of P N () in the four quadrants near the vertex
can then be described as follows: Among the curves of P N () determined by one
quadrant (called the north) is a component ¢, to which bands corresponding to the
two saddles are attached. In each of the two adjacent quadrants (the east and west)
is a pair of curves in P N () obtained by attaching one of the two bands. We denote
the pairs respectively as ¢., and ¢,,. In the remaining quadrant (the south) each of
the pair of curves c¢., and ¢, are banded together by one of the saddles to produce
either three curves or one curve of PN (), depending on how the bands are situated.

We call this curve (these curves) c;.

Lemma 5.6. In each of P and @), either ¢, can be isotoped off ¢5 or c., can be

isotoped off of ¢y, .

Proof: If the two bands are attached to the same end of a collar of ¢, then the

opposite side of the collar is an isotope of ¢, which persists after both bands are
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attached to make ¢,. If the bands are attached on opposite ends, then ¢, separates

Cey from ¢y . O

Lemma 5.7. If all four letters A, B, X, and Y appear in quadrants of a crossing

vertex of I' then either two opposite quadrants are unlabelled, or one of AUp B or
X Ug Y is weakly reducible [or M is S?].

Proof: It follows from 5.5 that if the conclusion does not hold (that is, if all four
letters appear, at least two adjacent quadrants are labelled, M is not S and both
splittings are strongly irreducible) then each of the four letters appears in a different
quadrant, with A opposite B and X opposite Y. If all four letters are upper case then,
following 5.6, there is either a curve in C4 disjoint from a curve in Cg or a curve in
Cx disjoint from a curve in Cy. But the former would imply that A Up B is weakly
reducible and the latter would imply that X Ug Y is weakly reducible. Hence we
conclude that in at least one quadrant there is only a lower case letter, say x. But
then in that quadrant Cp and Cg are empty, so either @) is a sphere (making M = S?)
or an essential curve in () lies in one of A or B. This would force the label a or b on
that quadrant and thereby ensure that a letter A lies across an edge from a letter B
which, via 5.5 completes the proof. O
The following variant of 5.7 is only used in the proof of 5.11 below:

Lemma 5.8. [f labels A and B and some lower case letter all appear as labels of
quadrants of a crossing vertex, then AUp B is either weakly reducible or it can be
destabilized.

Proof: From 5.1 we may as well assume that A and B are in opposite quadrants
and that both saddle tangencies lie on the same singular component of PN Q) at the
crossing vertex. The lower case label is in one of the other quadrants R;. According
to 5.3 the move from the lower case quadrant to the quadrants labelled A or B is
accomplished by attaching a band to an inessential component ¢ of P N (). The
bands are disjoint, since they correspond to simultaneous saddles at the vertex, so
a curve produced by one band intersects a curve produced by the other in either
one point (if the bands are attached along the same side of ¢ and the ends of the
two bands are linked in ¢) or none (otherwise). But when one band is attached the

curves bound a meridian of A and when the other is attached the curves bound a
meridian of B. O
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Suppose that AUp B and X Ug Y are strongly irreducible and M # S®. Consider
the labelling of the regions adjacent to d(I x I). Suppose, for example, that (s,1) is a
generic point with s near 0. Then P is the boundary of a small regular neighborhood
of a spine = of A. If = intersects (), then () intersects P., in meridian disks, so the
region should be labelled A. If = is disjoint from @), then so is P.s, and Ps lies in
either X or Y. It follows that the region is labelled y or x and, since () is not a
sphere, also labelled a. Similarly, regions adjacent to {1} x I are either labelled B
or labelled b and one of @ or y, regions adjacent to [ x {0} are either labelled X or
labelled # and one of @ or b, and regions adjacent to [ x {1} are either labelled Y or
labelled y and one of @ or b. Any region whose closure contains a vertex on d(1 x I)
also has one of these four types of labellings. If the boundary vertex abuts only one
edge in I' this is obvious. If it abuts two, then one of the edges only corresponds
to a center tangency, so the regions on either side of that edge will have the same
label, and one is fully adjacent to d(I x ). Regions adjacent to the four corners of
I x I must then be labelled, respectively, (a, ), (a,y), (b, 2) and (b,y). Under these

conditions we have:
Proposition 5.9. There is an unlabelled region in I x I —T.

Proof: Amalgamate edges of I' which are incident to the same birth-death vertex,
so that all vertices of I' have valence 4. Let A be the dual complex to I'in [ x [I.
Then the labelling of the regions of I x I —I' gives a labelling of vertices of A and,
since each vertex of I' is of valence 4, each face of A is 4-sided. Let A; denote the
subcomplex of A consisting of vertices which are labelled, and edges and faces of A
which are incident only to labelled vertices. It follows from 5.5 that the labelling
defines a simplicial map ¢ from the 1-skeleton of A; to the 1-skeleton of the complex
K shown in Fig. 1. Explicitly, ¢ assigns to a vertex of A; the identically labelled
vertex of K. ¢ extends to any (4-sided) face of A;, since the only essential 4-cycle
in K (namely A-X-B-Y) can’t appear around such a face, by 5.7. On the other
hand, we’ve just seen that the circuit in A coming from regions and edges whose
closures intersect d(1 x I) lies in A;. In fact, the description above of the labels on
this circuit shows that ¢ maps the circuit to A" with winding number 1. But A is
contractible, so ¢ can’t extend to all of A. This means that A; # A, so some regions
are unlabelled. O

A path in [ x [ is generic if it is in general position with respect to I'. That

is, it never goes through a vertex of I' and is transverse to each edge of I'. Let U
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denote the union of the unlabelled regions, together with all their adjacent edges

and vertices.

Proposition 5.10. For one of the pairs of letters A, B or X, Y (say the latter) there
is a generic path in U which begins at an edge adjacent to a region labelled X and

ends at an edge adjacent to a region labelled Y.

Proof: We continue with the same notation. Suppose R is an unlabelled region.
There is a generic path in U from the interior of R to an edge adjacent to a labelled
region S. Give R the labels of S and any other such labelled region which can be
reached by a generic path in U from R. If R ends up with both labels A and B
or both labels X and Y then the ends of the paths which give these labels can be
connected in R to give the path we are looking for. This gives a labelling scheme
for R which we can apply to every other previously unlabelled region so that either

we can find the required path, or

* each region is labelled and no region has both labels A and B or both labels
X and Y.

Then each region in (I x ) — I has labels which correspond to some vertex in A
and, by the definition of the labelling rule and assumption #*, adjacent regions still
satisfy 5.5.

Now suppose that all four labels A, B, X, and Y appear in the four quadrants at a
vertex. In order to satisfy 5.5, which we’ve shown remains true for the new labelling,

each quadrant must carry precisely one of the four labels. But according to our new
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labelling rule, any region which was previously unlabelled will have all the labels of
adjacent regions. This would mean that all four regions were among those regions
which were labelled to begin with, and this is forbidden by 5.7. We conclude that
5.7 remains true in the new labelling.

Since 5.5 and 5.7 still hold in the new labelling, the map ¢ of 5.9 can be extended
to all of A, which, as observed in the proof of 5.9 is absurd. We conclude that * is
false, and the required path exists. O

Suppose now that M is S®, P is not the 2-sphere, but @ is. Then the labels a, b,
X, and Y never appear, since () is simply connected. Also, every region must have
some label, either label A or B if a curve of intersection is essential in P, or label x

or y if no curve of intersection is essential in P.
Theorem 5.11. Any positive genus Heegaard splitting of S® can be destabilized.

Proof: If the theorem is false, then there is a least genus counterexample. Let
A Up B be such a counterexample. First we show that A Up B is weakly reducible.
If it isn’t, then from 5.1 and 5.8 we conclude that no two adjacent regions can be
labelled A, B or x,y, and around no crossing vertex can all labels A, B, x,y occur.
Since every region is labelled, this leads to the same sort of contradiction as in the
proof of 5.9. Here we use a map ¢ : A — K’, where the 1-complex K’ is just a
square with its four corner vertices labelled A — # — B — y in order around K.
Since AUp B is weakly reducible and S? contains no incompressible surfaces, it
follows from [CG] that A Up B is reducible. That is, some 2-sphere intersects P in a
single essential circle. Then A Up B can be viewed as the connected sum along this
2-sphere of two Heegaard splittings of 52, each of positive genus, but of lower genus
than P. By choice of AUp B each of these lower genus Heegaard splittings can be
destabilized. This implies that A Up B also can be destabilized, a contradiction. [

6. INTERPRETING THE GRAPHIC

We continue with the hypotheses of 5.9 and 5.10: A Up B and X Ug Y are strongly
irreducible and M # S®. These propositions mean, first, that P and @ can be
positioned in a particularly interesting way in M and secondly that there is an

isotopy of P with useful properties. To be precise, begin with

Definition 6.1. A pair of surfaces (P, Q) in M is compression-free if P and Q) are

in general position and each curve of PN() is either essential in both P and Q) or s
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inessential in both P and (). A curve of the former type is called an essential curve
of intersection and one of the latter type is called an inessential curve of intersection.

An isotopy F' : P x I — M is compression-free with respect to () if it is in general
position with respect to Q and, at every reqular value t, F(P x {t}) and @Q are

compression-free.
With these definitions we have:

Corollary 6.2. P may be isotoped in M so that P and () are in general position
and intersect in a non-empty family of curves, each of which is essential in both P

and Q).

Proof: Consider the positions of P and () corresponding to an unlabelled region
of the graphic (5.9). First note that P and ) are compression-free, for if, say,
some intersection curve were essential in P but inessential in () then an innermost
such curve would either lie in C4 or Cp forcing the label A or B onto the region.
Moreover, if P N () consisted only of inessential curves, then Cp and Cg would be
empty, and any essential curve in P could be made disjoint from P N ¢ in P, and
so would lie in either X or Y. This would force the label x or y on the region. So
PNQ must contain some essential curves. A standard innermost disk argument then
gives an isotopy of P which eliminates all inessential curves of intersection without
eliminating the essential curves of intersection. O

From 6.2 one can immediately deduce the central theorems of [Bo] and [BoO]

which together classify Heegaard splittings of the lens spaces.
Corollary 6.3. Any two genus one Heeqaard surfaces in a lens space are isotopic.

Proof: Let P and ) be two genus one Heegaard surfaces in a lens space, separating
the lens space, as usual, into solid tori A and B and solid tori P and () respectively.
According to 6.2, P and ) may be isotoped so that they intersect in a non-empty
family of essential circles. Further assume that they’ve been isotoped to minimize
the number n > 0 of such circles. Since the surfaces are separating, n is even. An
easy outermost arc argument on the intersection of () with a meridian disk of A or
B shows that n can always be reduced, so in fact n = 2. Then Py = PN X, Py =
PNY, Qs =0QNAand Qg = QN B are all annuli which are boundary parallel
in their respective solid tori. That is, Px is parallel in X to one of 4 or ()5 and

symmetrically for the other three annuli. Together, these four statements imply
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that Py is parallel to one of )4 or () and Py is parallel to the other. This means
P is parallel to Q). O

Corollary 6.4. Any irreducible Heegaard splitting of a lens space has genus one.

Proof: Let AUp B be a genus one Heegaard splitting of a lens space L and X Ug Y
be a splitting of higher genus. Since L contains no incompressible surfaces, it suffices
to show that () is weakly reducible. According to 6.2, P and ) may be isotoped
so that they intersect in a non-empty family of essential circles. As in 6.3 assume
that they’ve been isotoped to minimize the number n > 0 of such circles and let
Px=PNX P =PNY,Qs=0QNAand g = N B. Very explicit information
is known about the structure of Q4 and Qg ([MR]), but this is a deeper result than
we will need here, so we proceed with a direct argument.

Case 1: ()4 and ()p both contain components which aren’t annuli.

Consider the families of annuli Py and Py in their respective handlebodies. None
can be boundary parallel, since n has been minimized. With no loss of generality,
suppose Py is incompressible in X and d-compresses to () 4. This implies that there
is a meridian disk of X which lies in A. If there were also a meridian disk of Y lying
in B then () would be weakly reducible. We conclude that also Py 0-compresses to
@4 (and not to Qp) or compresses in A. Symmetrically, Py then can’t d-compress
to ()p. But an outermost arc argument on the intersection of ¢} with a meridian of
B shows that one of Py and Py must d-compress to (), a contradiction. We are
reduced to

Case 2: Q4 or Qg (say the former) consists entirely of annuli.

In this case, as in 6.3, we can assume that n = 2 and ()4 is a single annulus, so
Px and Py are each a single annulus as well. With no loss of generality, we can
assume that Py is incompressible in X and ()4 and Px are parallel via A N X.
Consider the annulus Py C Y. It must be d-compressible in the handlebody Y. If
it d-compresses to an arc in (), then the combination of this d-compression and an
isotopy of Py to ()4 defines an isotopy of P which makes P — () a disk D. Then
X C B and A is a solid torus summand of Y. That is, () gives a Heegaard splitting
of the solid torus B and such splittings are easily shown to be either genus one or
reducible (see [ST2]).

If Py O-compresses to an arc in ()4 then these two are parallel as well, via ANY,
so we can switch the roles of X and Y in the above argument. An outermost arc

argument on the intersection of a meridian of B with () shows that ()p d-compresses
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to either Py (and we are done as above) or to Py. In the latter case, switch the
roles of X and Y. O

For F': P x I — M, an isotopy of P which is in general position with respect to
Q C M,let f,: P— M denote F|P x {t} and P, denote f;(P).

Proposition 6.5. For one of the pairs of letters A, B or X, Y (say the latter), there
is an tsotopy F: P x I — M so that

(1) F is compression-free with respect to Q)

(2) every component of Py N Q) and Py N Q is essential

(3) there is a meridian disk of X which is disjoint from P,
(4) there is a meridian disk of Y which is disjoint from P;.

Proof: Consider the path in the graphic given by 5.10. The path begins at an edge
separating an unlabelled region R, from a region Rx labelled X. If Rx is in fact
labelled z, then extend the path slightly into Rx. If it is labelled X, then truncate
the end slightly so that the path begins in R,. Similarly extend or truncate the
other end of the path. The resulting path lies entirely in regions which are either
unlabelled or have lower case labels. The path defines simultaneous isotopies of P
and () in M. Extend the isotopy which this gives of () in M to an ambient isotopy of
all of M and then compose the simultaneous isotopies of P and () with the inverse
of this ambient isotopy of M. This maneuver makes () stationary throughout, and
we can focus on the resulting isotopy of P. Since the path never enters a region
with an upper case label, this isotopy of P is compression-free with respect to Q).

Consider how Fj intersects (). Suppose first that Rx is labelled X. Then in that
region there is a curve ¢ of intersection which is essential in () and bounds a disk in
Py containing no other essential curve in (). After a single saddle tangency we enter
region R,, where the intersection is compression-free. This implies that ¢ is altered
by a band move at the saddle. After the saddle move, C4 U Cp is empty, so before
the saddle move (i. e. in Rx) no component of C4 or Cg can be remote from ¢ in
(. Then ¢ bounds a disk in X which intersects Py only in inessential curves (4.3).
Let ¢’ be a curve in () which is parallel to ¢ and on the side of ¢ opposite to that
on which the saddle is attached. Then ¢ will be unaffected by the saddle move. So
after the saddle move (i. e. in R,), ¢ bounds a disk in X which intersects Py only
in inessential circles.

Now suppose instead that Rx is labelled z, so the path begins in this region. In
Rx all components of PN () are inessential in both Py and (). Moreover, the label «



18 HYAM RUBINSTEIN! AND MARTIN SCHARLEMANN?

means that a spine of F lies in Y. This implies that a meridian of X chosen so that
its boundary is disjoint in () from Fy N () intersects Fy only in inessential circles.

We have shown that, regardless of whether Rx is labelled # or X, there is a
meridian disk of X which intersects Fy only in inessential circles. In order to guar-
antee that the meridian is in fact disjoint from Fy, we first describe how to alter the
isotopy so that at the beginning of the isotopy all curves of intersection are essential.

A standard innermost disk argument shows that we can eliminate all inessential
circles of Py N ) by an isotopy of P. Recall the argument: Let D be the disk in
() bounded by an inessential component ¢ of P N () that is innermost on (). Let
E be the disk in P bounded by ¢. The sphere U D can be pushed off P and
hence bounds a ball B whose interior is disjoint from P. Hence P is isotopic to
P = (P — FE)U D. This isotopy eliminates ¢ and maybe other curves from P N Q);
continue until all inessential components of P N () are eliminated.

Notice that this isotopy moves only a neighborhood of disks in P, and the only
part of () through which parts of P are moved is the part lying inside the ball B.
But B N @ consists of disks since, by assumption, the curves 0B N Q = £ N Q
are inessential in () and no spine of @ can lie inside B (since M # S®). This
means that the isotopy is compression-free. Furthermore, the isotopy only deletes,
and never creates, curves of intersection of P with the meridian of X found earlier.
But once this isotopy has eliminated all inessential components of P N @), it follows
immediately that the meridian in fact bounds a disk in X which is disjoint from
P. So we precede our original isotopy with the reverse of the isotopy just defined.
Then the isotopy remains compression-free and begins from a position in which a
meridian of X is disjoint from P. Then at the beginning of the isotopy all curves of
intersection are essential and a meridian of X is disjoint from P.

The same argument and construction can be applied at the end of the isotopy. O

It may be worth noting that there is nothing which prevents F' from being con-
stant. That is, there is no reason why it cannot simultaneously be true that P N ()
contains only essential curves, and that there are meridians of X and Y which are
disjoint from P. Of course the boundaries of these meridians must intersect, since

@ is strongly irreducible, and, for the same reason, P N Q can’t be empty (cf 4.5).

7. FINDING SIMPLE ISOTOPIES

In analogy with 6.2, it would be good if we could somehow limit the number of

inessential curves of intersection which appear during the isotopy constructed in 6.5.
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Of course a center tangency creates or destroys an inessential curve of intersection,
so it would be restrictive indeed not to allow any inessential curves of intersection

at all during the isotopy. The aim of this section is to do the next best thing.

Definition 7.1. An isotopy of P which is compression-free with respect to () is
called simple if for each generic value t there is no more than one inessential curve

We will show that the isotopy of 6.5 can be used as a model to construct a similar
isotopy which is simple. The first lemma shows that this is true in a special case.

For an isotopy of P which is in general position with respect to ), let C'; denote
P, N @) and let ¢; denote the pre-image of C; in P. For all but a finite number of
critical values of ¢, (; is a collection of simple closed curves. At the critical values, Cy
may contain a single point of tangency, either a saddle point (lying in a component

of Cy homeomorphic to the figure 8) or a center, which is an isolated point.

Lemma 7.2. Suppose there is an isotopy F': P x I — M so that

(1) F is in general position with respect to @)
(2) each component of Cy and Cy is essential in both P and Q).
(3) for every reqular value of t, Cy is the union of Cy and a collection of curves

which are inessential in both P and ().

Then there is an isotopy F': PxI — M from fy to f1, so that for all t, f+(P)NQ =
Co.

Proof: Extend ¢p to a spine ¢ of P. We first define the isotopy F’ on ( so that
during the isotopy, f'7'(Q) just remains go C (. That is, during the isotopy, the
part of the spine ( away from ¢g never intersects ().

Away from saddle tangencies of P; and @), F’|¢ will be the composition of I with
an isotopy #; : ( — P. Construct the isotopy i; as follows. Let ¢;,¢;,...,¢, be the
levels at which there are saddle tangencies of P; with ) and let tg = 0 and ,.1 = 1.
For t near ty = 0, just let ¢; be the inclusion. Suppose, for : = 0, ..., n, the isotopy
has been defined on [0,¢; 4+ ¢]. On the following interval, from ¢; + ¢ to ;11 — ¢, let
1; be an isotopy of ( in P chosen to avoid the family of curves ¢;. This is possible,
since ¢; changes only by isotopy and the addition or deletion of inessential curves
(corresponding to center tangencies).

Near a saddle tangency, i. e. in the interval [t; — ¢, t; + ¢],2 = 1,...,n, it may be

impossible to define 7; so as to avoid ¢, since the core of the band associated to the
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saddle tangency at ¢; may essentially intersect i;,_.((). Since the saddle tangency
only involves curves which are inessential in P, it is possible to isotope all of ¢, lying
in a component of P — ¢g into a subdisk of the component. Thus there is an isotopy
of i4,_() in P — ¢o to a new position which is well away from ¢;,. Define i;,4.(() to
be this imbedding of . Unfortunately, the isotopy in P — go from i;,—.(() to is,4.(¢)
may involve pushing arcs of ( across inessential curves in ¢;,_., and so push ( across
(). Perform the isotopy anyway, with the following modification: When an arc of ¢
is supposed to be pushed across a disk in P bounded by an inessential curve ¢ of
Gt;—e, push the arc of ( instead across a disk parallel to the disk which ¢ bounds in
(. Then ( never is pushed across @) and ends up in a position on f;,_.(P) which is
distant from the saddle tangency. After this push, we can pass through the saddle
tangency without forcing any of ¢ across (). This completes the definition of F” on
C.

Extend F':( x[0,1 —¢] = M to all of P using a neighborhood of ( in P. Since
¢ never crosses ) during the isotopy, f';'(Q) remains just go. Furthermore at the
end of the isotopy, as we have constructed it, f{__ carries ( to a spine of P;_, which
is isotopic in Pi_. to fi_.(() rel go. Follow F” with this isotopy, ambiently extended
across P;_. rel qo. The isotopy will not push any of P,_. across (), since Pj_.
intersects () only in qo. Afterwards, f; = fi on (; ambiently extend this equality
to a neighborhood n of (. Now f{(P — n) is disjoint from @, so the collection of
disks f{(P —n) lies in M — Q. Since M — @ is aspherical, a standard innermost disk
argument can be used to isotope fi(P —n) to fi(P —n) in M — @ by an isotopy
fixing (. O

Theorem 7.3. Suppose the isotopy F': P x 1 — M is compression-free with respect
to Q) and each component of Cy and Cy is essential.

Then there is a simple isotopy F' : P x I — M from fo to fi so that, for any
reqular value of t, the collection of essential curves in f',(P) N Q consists precisely

of the essential curves of Cy.

Proof: Case 1: No critical point of the isotopy involves essential curves of inter-
section.

This case is essentially Lemma 7.2

Case 2: There is just one critical point which involves essential curves of inter-

section.
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Let ty be the critical level. With no loss of generality we can assume that two
curves ¢, ¢” in Cy,_. are fused to create ¢ in Cy 4., and that at most one of the
three curves is inessential (since otherwise all three would be). In particular, we can
assume that ¢’ is essential, so that the singular component of ('}, is not contained in
the interior of any disk in P, or () bounded by an inessential curve of intersection.
Now a standard innermost disk argument (as in 6.5) provides a compression-free
isotopy which eliminates all inessential circles of intersection in C;,. We can in-
corporate this isotopy just before tg and its inverse just after and thereby assume
that (', has no inessential circles. A bicollar of P, in M then defines an isotopy
G P x [to— €,to + €] — M. During the isotopy G at most one curve (either ¢’
or ¢) is inessential in P and ). If there is such an inessential curve, extend the
isotopy by isotoping the disk the curve bounds in P to the disk it bounds in ¢) and
then incorporate a center tangency which removes the component. The construction
shows that the pair of imbeddings fy and ¢;,—. are connected by an isotopy satisfying
the hypotheses of Lemma 7.2, as are the pair ¢4, 4. and fi. Then the conclusion of
Lemma 7.2 provides isotopies from fy to g4, and from ¢4,+. to fi during which no
inessential curve of intersection is introduced. Combining the three isotopies, we get
an isotopy from fy to f; during which at most one inessential curve of intersection
(either ¢” or ¢) is introduced and it is then immediately eliminated.

Case 3: The general case.

The proof of the general case is by induction on the number of critical values
whose critical point involves essential curves. If there is only one, we are done by
the previous case. Otherwise, let ¢, be a regular value between the first two such
critical values. A standard innermost disk argument (as in 6.5 gives an isotopy
G from f,, to a map f : P — M so that during the isotopy no essential curves
of intersection with () are affected, but all inessential curves of intersection are
removed. In particular, all curves in f(P) N @ are essential in both surfaces.

Now alter the isotopy F' by inserting the isotopy G followed by its reverse G near
the level 5. After this alteration F' is the product of an isotopy from fy to f having
one critical value involving essential curves and an isotopy from f to f; having one
fewer such critical point than F' did. Apply the inductive assumption to each of
these isotopies independently, and then adjoin the result. O
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8. SPINAL INTERSECTIONS WITH MERIDIAN SYSTEMS

Theorem 8.1. Suppose X Ug Y is strongly irreducible and there is a generic am-
beent isotopy F' : P x I — M so that

(1) there is a meridian disk of X which is disjoint from Py and
(2) there is a meridian disk of Y which is disjoint from P;.

Then there are complete collections of meridian disks Ay, A for A and B re-
spectively and a generic extension of F' to the 2-complexr K = PU A4 U Ap so that
for each t in some sub-interval of I, the 1-complex ry = fi( K)NQ in Q contains an

entire spine of ().

Proof: Let p;,2 = 0,1 be the given meridian disks for X and Y which are disjoint
respectively from P;,7 = 0,1. Choose complete collections of meridian disks A4, Ap

and the extension of I so that

a) no component of A — Ay (resp. B — Ap) is adjacent to both sides of the
same disk in Ay (resp. Ap)
b) for ¢ = 0,1, f;(K) is also disjoint from p; .

This can be done by first choosing any complete collections of meridian disks A 4
and Ap which satisfy a) and any extension of F' to K, then modifying them near
t =1 via the reverse of an isotopy rel P; which shrinks p; very small.

Suppose, for a generic ¢, some component R of the complement of k; in ) is
essential in ). Then R lies in a component W of the 3-manifold M — P;(K). By
definition of K, W is a ball. No spine of () could lie in W, for otherwise M would
be a 3-sphere. Hence some component of dR is essential in ). It also bounds a
disk in OW ~ S%. A component of 9W N @) which is innermost in W among all
components of JW N () which are essential in ¢) then bounds a disk lying entirely
in X or Y. We’ve thus shown that if some component of the complement of x; in ()
is essential in () then some boundary of some such component bounds a disk in X
or Y. Call such a disk a k; compressing diskin X or Y. There can’t simultaneously
be a k; compressing disk in both X and Y, since () is strongly irreducible.

At the beginning of the isotopy there’s no kg compressing disk in Y, since it and
to would give a weak reduction of X Ug Y. Similarly, at the end of the isotopy
there’s no k; compressing disk in X. Hence either there is a generic value ¢y for

which no k; compressing disk exists (the desired conclusion), or there is a critical
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value ty at which there is a switch, say, from a k4 _.-compressing disk in X to a
Kiyte-compressing disk in Y.

There are two possible types of non-generic behavior at ¢,. There may be a point
of tangency between () and a point of f;(K’) away from A4 UIJAp or there may be
a point of tangency between () and the attaching circles A4 U 0Ap. In the latter
case, we can assume by general position that P and () are not also tangent at that
point, so the effect of the tangency of the attaching circle on k4, is merely to add or
remove a small inessential arc near the point of tangency. In particular, this sort of
singularity can’t create or destroy a ry,_. compressing disk. This is also true when
() has a center tangency with a point in K away from A4 U dAB.

The remaining possibility is that ) has a saddle tangency at a point in K" away
from 0A4 U 0Ap. Such a saddle tangency can indeed simultaneously destroy a
Kiy—e-compressing disk in X and create a k4 4.-compressing disk in Y. But the
curves created and destroyed by a single saddle tangency in () can be isotoped in
@ to be disjoint, for our requirement a) of A4 and Ap guarantees that the curves
lie in distinct components of M — K. So there would persist a meridian disk of X
whose boundary is disjoint from the meridian disk of ¥ created at g, and this would

contradict the strong-irreducibility of X Ug Y. 4

9. DESTABILIZING ANNULAR 1-HANDLES

Much of this section was inspired by more delicate arguments used in [K] to
understand families of annuli and tori in Heegaard splittings.

Suppose A is a finite set of d-compressible annuli embedded in a handlebody H
of genus p, v is a set of spanning arcs for A and 7 is a regular neighborhood of
in H. We view 7 as a collection of 1-handles added to P = dH, each corresponding
to an annulus in A. Let H' denote the closure of H — 7 and P’ denote dH'. Since
a spanning arc of a d-compressible annulus in H is parallel to an arc on dH, it’s

apparent that H' is a handlebody of genus p + |A].

Proposition 9.1. Suppose 0A is essential in OH and A is a complete collection
of meridian disks for H which intersect A only in spanning arcs. Then there is an
ordering Ay, Ay, -+ A, of A and, for each of all but at most 2p — 2 of the A; there
is a properly imbedded disk E; in H' so that the E; are all disjoint and have the

following properties:

(1) OF; is disjoint from the 1-handles corresponding to the annuli Ag, k > 1
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(2) OF; runs exactly once across the 1-handle corresponding to A;.

(3) OF; is disjoint from any component of P — dA which is not an annulus.

Moreover, we may find I; among the components of A — A.

Proof: Some component A; is d-compressible in H via a d-compressing disk whose
interior is disjoint from A. A useful way to see this is to use as the d-compressing
disk the component cut off from A by an outermost arc of ANA. Inductively define
A; as a component of A — U{A;,7 < i} which d-compresses in the complement
of A —U{A;,j < i}. Choose a d-compressing disk D; at each stage so that dD;
is disjoint from the disks in H which are the remains of the A;, ;7 < 1 after 0-
compression. This ordering of A and choice of disks D; is called a compressing
system for A.

A compressing system for A defines a directed graph I' as follows: Each vertex
of I' corresponds to a component of H — A and each edge of I' corresponds to an
annulus of A. The ends of an edge in I' corresponding to an annulus A; are adjacent
to the vertex or vertices in I' which correspond to the component or components of
H — A adjacent to A;. In other words, if the components V and V' of H — A lie on
either side of A;, and vertices v and v’ are the corresponding vertices of I'; then the
edge of I' corresponding to A; runs between v and v’. Direct the edge toward the
vertex which represents the component of H — A on which D; abuts A;.

Notice the effect of the d-compressions on the topology of the components of
H — A: 0-compressing A; changes the topology only of the component V' in which
Dy lies. In V| Dy is non-separating, so V is changed by a single non-separating
O-reduction. This increases its Euler characteristic by one. More generally, let A4;
denote the remains of A after the d-compressions to Ay,---, A;, which converts
each of these annuli into a disk. Then the d-compressing disk D;, 1 for A,y lies in
a single component of H — A; and the effect of the d-compression is then to alter
precisely this component by a single non-separating d-reduction, raising its Euler
characteristic by one.

For any vertex v € I, let n_(v) denote the number of edges in I which are oriented
into v. Following the previous discussion, we see that if V is the corresponding
component in H — A then x(V) < 1 —n_(v), since after n_(v) non-separating 0-
reductions the Euler characteristic is at most 1 = y(B?). In particular, if x(V) =0

then n_(v) is at most one.
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If a vertex v is the base of a loop in I, then the corresponding component V
of H— A has (V) < —1. Indeed, the annulus corresponding to a loop must be
non-separating, so after a d-compression of the annulus (i. e. a d-reduction of V),
V' would still contain a non-separating disk. This means V' admits two independent
O-reductions, so y(V) < —1.

Consider a component V' with corresponding vertex v for which x(V) = 0 and
n_(v) =1,s0V can be d-reduced. Then V must be a solid torus. If A; is the annulus
corresponding to the edge pointing into v, then the disk D; of the compressing
system becomes a meridian disk for V' after V' is expanded by the earlier boundary
compressions of A;, 7 < 1. The disk D; intersects A; in a single spanning arc and
intersects no Ax, k > 1. In particular, A; is a longitudinal annulus in V' and, since
OA is essential in 0H, any A;,7 < 7 incident to the solid torus V' must also have
been a longitudinal annulus. It follows that the subdisk of D; — A which abuts A;
has all the properties we seek for E;. It remains to do a count of how many annuli in
A don’t satisfy these conditions, i. e. the edge corresponding to the annulus points
into a vertex w in I' with n_(w) > 1 or for which the corresponding component W
in H — A has y(W) < 0.

An easy way to do this count is to collapse any edge in I with the property that it
is the unique edge oriented into some vertex, and for which the component of H — A
corresponding to that vertex is a solid torus. (We've already seen that such an edge
can’t be a loop.) The collapse removes the edge and one vertex, which we take to
be the vertex corresponding to the solid torus, i. e. the head of the arrow. The
number of edges pointing into the remaining vertex (i. e. the tail of the arrow) is
unchanged. (The graph is equivalent to the graph we would get if we removed from
A the annulus corresponding to the edge.) After collapsing all such edges we are
left with a graph I'” so that each vertex is either a source or corresponds in H — A
to a component with negative Euler characteristic. In particular, if T is the set
of vertices in I which are not sources, then |T| < —y(H) = p — 1. Furthermore,
for a vertex v € T corresponding via I' to a component V of H — A we still have

I —n_(v) > x(V). Summing over all vertices in T:

Seer(l—n_(v)) = x(H) =1-p.

Now clearly ¥,ev(n_(v)) is just the number e of edges in I, so we have |T|—e > 1—p
ore<|T|+p—1<2p—2. O
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10. SPINAL INTERSECTIONS OF SPLITTINGS SURFACES

Definition 10.1. Suppose A4 and Ap are (not necessarily complete) collections of
meridian disks for A and B respectively and K is the 2-complexr PUA,UAp. Then
K has pre-spinal intersection with () if K and @ are in general position and the
I-compler k = K N Q contains an entire spine of (). K has spinal intersection with
Q if, in addition, for each disk D € (A4 U Ag), DNQ is a single arc. We say
that P is pre-spinal (resp. spinal) with respect to Q) if there is some collection of

meridian disks whose union with P has pre-spinal (resp. spinal) intersection with

0.

Theorem 10.2. Let P and Q be Heegaard splitting surfaces in M of genus p > 2
and q > 2 respectively. Suppose the pair (P, Q) is compression-free and only a single
component of PN Q) is inessential. If P is pre-spinal with respect to () then after at
most Tq + 4p — 9 stabilizations of P, P is spinal with respect to ().

Proof: Since k contains an entire spine of () it follows that no circle of intersection
of Ay UAp with () can be essential in (). An innermost disk argument in () then
allows us to remove such circles of intersection by an isotopy of AjUApg. Afterwards,
A4 and Ap intersect () only in arcs and k becomes the union of P N () and these
arcs; let v be a minimal collection of arcs in @ N (A4 U Ag) so that (PN Q) U~ is
a spine of (). Denote this spine (.

Alter P by a 1-surgery along each arc of 7. That is, remove from A a neighborhood
of each arc of v that lies in A4 and attach the neighborhood to B. This creates a
new l-handle in B whose 2-disk cocore intersects () in a single arc. Similarly, remove
from B a neighborhood of each arc of v lying in Ag and attach the neighborhood
to A. Every arc of v is parallel in A4 or Ag to a subarc of P, so this operation
stabilizes P. Denote the resulting stabilized Heegaard splitting surface P’, and the
set of co-cores of the new 1-handles A’. Let K’ denote the 2-complex P’ U A’ and
k" denote K'N Q). It is easy to see how &’ is obtained from x: When P is stabilized,
each arc of v in () is replaced by a band. That is, a figure I neighborhood of the
arc in () becomes a figure |[. When the cocore of the new 1-handles are added to
P’ to make K’, the figure ][ becomes a figure H. The combination, which replaces
I with H, has no effect on the topology of the complement of (; in particular, the
I-complex remains a spine, which we call {’. So after this stabilization, P’ is spinal

with respect to ().
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One simplification of this picture is immediate: If there are three curvesin PN Q
which are parallel in () then each of the two annular components of () — P which
they cut out contains a spanning arc from . When P is stabilized along these arcs,
as above, the effect is to replace these three components of PN by a single isotopic
curve of intersection. So (' is a spine even if we don’t include the cocores dual to
these 1-handles in A’. Generalizing from this observation, consider the arcs of
lying in a single collection of adjacent annuli in () — P. From the new stabilizing
1-handles which correspond to these arcs, we need to include at most one cocore
2-disk in A’ to ensure that (' remains a spine of ). In fact, if the number of annuli in
the collection is odd, we don’t have to add any cocore 2-disks. (These observations
remain true even if the inessential component of P N () lies in one of the annuli.
That is, even if we allow into the collection of parallel curves those which are parallel
ignoring the inessential component of intersection.) To summarize, P’ is obtained
from P by stabilizing along |vy| arcs. For some subcollection h of the stabilizing
I-handles, one from each arc lying in a non-annular component of () — P, and at
most one from each collection of annuli which are adjacent in (), include the cocore
in A’ C K'. Then " = @ N K’ is a spine of @), so P’ is spinal with respect to Q).

There is no apparent bound to the genus of P’, because there is no bound on the
number of annular 1-handles, that is 1-handles added to P along arcs of v spanning
annuli of ) — P. The number of 1-handles in & is bounded, however, since at
most one needs to be chosen from any contiguous set of annuli. We will show that
Al < 7q—T.

First notice that since there is at most one disk component of () — P, there are
at most 2¢ — 1 components of () — P which have negative Euler characteristic. In
each component of () — P there will be at most one disk of ) — (, for otherwise we
could reduce ¢ by removing an edge between two such disks. Hence the complex
consisting of the circles P N () together with all arcs of v lying in components of
() — P with negative Euler characteristic has itself Euler characteristic no less than
X(Q)—(2¢g—1)—1=2—4q. Hence it includes at most 4¢ — 2 arcs of 4. Similarly, in
@ the total number of families of parallel curves of P N @ is at most 3¢ — 3. (Since
only one curve of PN () is inessential, only essential curves of intersection appear in
parallel families, so for this last calculation we can ignore the inessential intersection

curve.)
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In the absence of a bound on the number of annuli in () — P, and hence to the
number of annular 1-handles which stabilize P, we instead will use a collection of
destabilizing disks, found via 9.1, to cancel all but at most 4p — 4 annular 1-handles
not in A. This bounds the total number of stabilizations needed to make P spinal
by ||+ 4p —4 < Tqg+4p —9.

As a preliminary move, separately isotope dA 4 and JA g near annular components
of P— (@) so that A 4 and dAp don’t intersect in any such annulus component. Use
a collar of P N () in () to taper this isotopy so it’s only visible effect on ¢ in @) is
to alter the ends of v near some components of P N () by a fractional Dehn twist.
In particular ¢ remains a spine and so nothing is lost. What is gained is that now,
because of property 9.1.3, the destabilizing disks defined in Proposition 9.1 for the
annular components Q 4 of )N A will be disjoint from the destabilizing disks defined
for the annular components Qg of () N B, since we may take the destabilizing disks
to lie in A4 and Ap respectively. So we may use the disks to destabilize all but
at most 4p — 4 of the annular 1-handles. Of course we don’t destabilize an annulus
whose 1-handle is in & nor is it immediately apparent we can destabilize across those
solid torus components of A — Q4 or B — Qp which may contain other components
of ) — P.

In fact, the number of solid torus components of A — Q4 or B — Qp which can
contain a non-annular component of ) — P is shown in [MR] to be at most one, so
this last problem is minor. But more directly, it’s easy to argue as in the proof of 9.1,
that even in such torus components there is still a destabilization disk for the annular
1-handle. The only difference is that its boundary may run over the 1-handles in 7

which come from arcs of v in the non-annular components of () — P. O

11. SPINAL INTERSECTIONS AND STABILIZATION

Definition 11.1. An oriented splitting surface P in M has spinal intersection with
an oriented splitting surface Q) in M if

(1) P and Q are in general position except at a finite number of saddle tangencies
(2) at the points where P and @) are tangent the orientations of P and Q in M
coincide

(3) the resulting 1-complex k = P N Q contains a spine of Q).

Lemma 11.2. If P is spinal with respect to () then P may be isotoped so that it

has spinal intersection with ().
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Proof: Let A be a set of meridian disks in A and B so that the complex K = PUA
has spinal intersection with (). Consider a disk D € A and the single arc D N @
lying in D. The arc cuts D into two disks, either of which can be used to isotope @)
near D so that D N becomes a single point in D at which P and ) are tangent.
The effect on Kk = K N Q) is to replace a neighborhood in @) of the arc D N (), which
looks like a figure I, with a saddle tangency of P and (), which looks like a figure X.
Choose one of the two disks in D — () so that P and () have the same orientation
at the tangency point.

After this isotopy is done at every disk in A, then K NQ = PN Q is still a spine

of ), and at every tangency point the two surfaces have the same orientation. [

Lemma 11.3. If P has spinal intersection with () then there are neighborhoods
np(k) and ng(k) of k in P and Q) respectively so that, after a small ambient isotopy

of M rel &, np(r) = nq(x).

Proof: Since P and () have a saddle tangency near each vertex in x, a small
isotopy carries a disk neighborhood in P of each vertex to a disk neighborhood in
(). Nowhere on « will there be a point at which the normal vector to P is directly
opposed to the normal vector to ), for this would give rise to a saddle tangency
and by hypothesis the orientations coincide at all such tangencies. Hence along
an edge in k, the winding number of the normal vector to P with respect to the
normal vector to () must be trivial. Then an isotopy near the edge will rotate a
neighborhood of the edge in P tangent to a neighborhood of the edge in (). After
this is done on all of x, a neighborhood np(x) can be isotoped down to ng(x) via

orthogonal projection to ng(k). O

Proposition 11.4. Suppose P and () are oriented splitting surfaces of genus p and
q respectively. If P has spinal intersection with ) then P and () have a common
stabilization of genus p + q.

Proof: Following the previous lemma, isotope a neighborhood np(x) of K = PN Q
in P so that it coincides with a neighborhood ng(x) of & in Q). Let = be a spine of
the handlebody X with a single vertex and ¢ edges. Since = can be isotoped into @),
it can be isotoped into ng(k) = np(x) C P. After = has been moved into P, push a
small interior arc of each of the ¢ edges of = into B and off of P. The union H of
A and a relative regular neighborhood of these arcs in B is a handlebody obtained
by adding ¢ trivial handles to A, so dH is a ¢-fold stabilization of P.
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Now imagine pulling more of each arc of = into B until all of = except the vertex
has been pulled into B. This defines an isotopy of H after which dH is apparently
also a Heegaard splitting of the handlebody Y obtained by removing a neighborhood
of = from M. Any Heegaard splitting of a handlebody is just a stabilization of the
boundary [ST1, 2.7], so 0H is then also a stabilization of ) = 9Y". O

Theorem 11.5. Suppose AUp B and X Ug Y are strongly irreducible Heegaard
splittings of M and are of genus p < q repectively . Then there is a genus 8q+5p—9
Heegaard splitting of M which stabilizes both AUp B and X Ug Y.

Proof: By 5.11, 6.3, and 6.4 we may as well assume that p > 2. According to
6.5 and 7.3 there is an isotopy of P in M which is simple with respect to ) and
satisfies the hypotheses of 8.1 (but possibly symmetrically, with (A, B, P) instead
of (X,Y,Q)). Then the conclusion of 8.1 gives a location for P so that, according to
10.2, after at most 7¢ 4 4p — 9 stabilizations of P (so that P has genus 7¢+ 5p—9),
P is spinal with respect to (). Then according to 11.2 there is a small isotopy of
P which gives it spinal intersection with ¢). Finally, 11.4 then says that the new P
and the old ) have a common stabilization of genus 8q + 5p — 9. g

Corollary 11.6. Suppose X Ug Y and AUp B are Heegaard splittings of the same
irreducible non-Haken 3-manifold M and are of genus p < q repectively . Then
there is a genus 8q + 5p — 9 Heegaard splitting of M which stabilizes both AUp B
and X Ug Y.
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