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1. Introduction

In 1898 P. Heegaard [He| gave a simple way to build a complicated 3-manifold.
Begin with the 3-ball B® and in its boundary pick out two disjoint 2-disks Dy and
D1. Using those disks, attach to B® a handle, that is a copy of D? x I, by identifying
D? x {i} with D;, 1 = 0,1. Depending on the orientation with which the ends of the
handle are attached, the result is either D? x S? or a solid Klein bottle. One can
continue to attach more handles to B® in a similar way. The result of attaching g
handles to B® is called a handlebody of genus g. Topologically there are exactly two
handlebodies of genus g, one of them orientable and the other not orientable. Now
suppose that H; and Hj are handlebodies of the same genus and orientability. Then
OH; and 8H, are homeomorphic. One can construct a complicated 3-manifold by
attaching H; to Hs by a possibly complicated homeomorphism from 0H; to 8Hs.
The resulting closed 3-manifold M can be written M = H; Ug Ho, where S is the
surface 0H; in M. This structure on M is called a Heegaard splitting of M and S is
called a Heegaard splitting surface. Two Heegaard splittings of a closed 3-manifold
M are equivalent if their Heegaard splitting surfaces are isotopic in M. They are
homeomorphic if there is a homeomorphism of M carries one to the other.

Now natural questions arise: How universal is this construction? Is there a
natural extension to 3-manifolds with boundary? This is considered in section 2.
In section 3 we shall study four important structures of Heegaard splittings:

1) Stabilization

2) Reducibility

3) O-reducibility

4) Weak reducibility

As an application, in section 4 we shall give a proof to a conjecture on tunnel
numbers of composite knots.

These notes were taken by Ruifeng Qiu, Jilin University, Changchun, China
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2. Some notions and resulis on 3-manifolds

In this section, we shall introduce some notions and results on 3-manifolds.

2.1. The Heegaard splittings of 3-manifolds.

Definition 2.1. A 3-manifold M is a separable metric space locally homeo-
morphic to B3 = {(z1,22,%3)jzs > 0}. That is, for any « € M, there is an open
neighborhood of z, say U, and an open set of B, say V, so that U is homeomorphic
to V. If the homeomorphism carries = to R* = {(z,,22,%3)|z3 = 0}, then z € M.
Thus M is well defined. M is called the boundary of M.

A foundational theorem of Moise[Mo] (see also [Bi]) says that all 3-manifolds
can be triangulated. That is the following theorem:

Theorem 2.2[Mo]. 1) Any compact 3-manifold is homeomorphic to a finite
simplicial complex.

2) If M is homeomorphic to two simplicial complexes X and L, then the home-
omorphism from K to I is isotopic to a homeomorphism which is piecewise linear.

Exercise 2.3. Suppose that K is a simplicial complex.

1) When is K a compact 3-manifold?

2) When is K a compact m-manifold?

3) When is K a manifold with M # ¢?

Suppose that (M,0M) and (IV,8N) are two compact manifolds. An inclusion
(N,ON) C (M,0M) is proper f SM NN = N .

PL topology implies the following:

1) Any point in the interior of a 3-manifold M has a neighborhood homeomor-
phic to a 3-ball.

2) Any properly embedded arc a in (M, M) has a neighborhood homeomor-
phic to @ x D?, where D? is a disk.

3) If M is orientable and ¢ is a circle in the interior of a 3-manifold, then ¢ has
a neighborhood homeomorphic to ¢ x D?. )

4) If M is orientable and S is a properly embedded orientable surface in M,
then S has a neighborhood homeomorphic to S x 1.

Attaching a 1-handle to a 3-manifold M means that M Uy (I x D?) where D>
is a disk and h : (8I) x D®* — 8M is an embedding map. Attaching a 2-handle
to a 3-manifold M means that M Up (D* x I) where h : (8D*) x I — 9M is
an embedding map. If A is orientation preserving, then the result is-orientable. A
handlebody of genus g is the 3-manifold obtained from a 3-ball B® by attaching g
1-handles.

Examples. 1) If I' is a connected finite graph properly embedded in a 3-
manifold M with v vertices and e edges, then n(T") is a handlebody of genus (e —
v+ 1), where n(T") is a neighborhood of I'.

2) If M is a closed 3-manifold and K is a triangulation of M, then n(X*) and
M —intn{K') are handlebodies, where K is the 1-skeleton of K.

Proof. 1) Let I" be a maximal tree of I'. Since I contains v vertices, I
contains v—1 edges. Since I' contains e edges, n(I") is obtained by attaching e—v+1
i-handles to n(I"). Since 7(I") is a 3-ball, p(T') is a handlebody of genus e — v + 1.
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2) By 1), n(K1!) is a handlebody.

Now let T be the dual 1-skeleton of K which is defined as follows. The vertices
of T are the barycenters of the 2- and 3-simplices of K and edges connect the
barycenter of a 3-simplex to the barycenter of each of its faces. By 1), n(I') is a
handlebody. It is easy to see that M — intn(K') is homeomorphic to n(T"}. Thus
M ~intn(K?) is also a handlebody.

O

Corollary 2.4. Let M be a closed 3-manifold. Then M = H; Uy Hz, where
H, and H, are handlebodies and h: dH; — OH, is a2 homeomorphism.

Definition 2.5. A Heegaard splitting of a closed 3-manifold M, denoted by
M = H; Ug Hs, is a surface S in M which divides M into two handlebodies H,
and Hg .

Two Heegaard splittings of a closed 3-manifold are equivalent if their Heegaard
surfaces are isotopic. By Corollary 2.4, any closed 3-manifold has a Heegaard
splitting.

Exercise 2.6. Construct Heegaard splittings for the following 3-manifolds:
DM=T%=8" x8 xSt

9) M = S' x S
3) M = S* x §, where S, is a closed surface.
4) M = RP®.

Exercise 2.7. Classify all the closed 3-manifolds with genus one Heegaard
splittings.

Definition 2.8. Let F be a closed surface not homeomorphic to a 2-sphere.
A compression body H is the manifold obtained from F' x I by attaching 1-handles
to F x {1}. We denote by 0_H = F x {0}, 8+ H = 8H ~ F x {0}. If no 1-handles
are attached, I' x I is called a trivial compression body.

Remarks

1) Let S be a closed surface, and let M be the manifold obtained from 5 x [
by attaching 2-handles to S x {1} and capping off 2-spheres with 3-balls. Then
M is either a handlebody or a compression body. In the following argument, a
handlebody is viewed as a compression body with 8_H = ¢.

2) The cores of the handles are called meridian disks and a collection of meridian
disks is said to be complete if each of its complementary components is either a
3-ballor 0_H = I.

The construction of Heegaard splittings for closed 3-manifolds in the previous
examples suggests several possible ways of extending the definition of Heegaard
splitting to cover the case in which the 3-manifold has boundary. The most useful
is the following: Write &M as the disjoint union of two sets of components, M
and 8, M. Choose a triangulation K of M so that no simplex of K is incident to
more than one boundary component Let K be its barycentric subdivision. Delete
the interior of all simplices of K incident to 9, M. The resulting 3-manifold M is
homeomorphic to M, since only a collar of 9o M has been 1emoved; let (92M denote
M in this new triangulation. Then 8, M contains the subcomplex of the dual
subcomplex I" determined by simplices incident to 9. M. Let I'y C M’ be the union
of & M and all vertices and edges not incident to J2 M . Let I’y be the union of 89 M
and all vertices and edges of the dual l1-complex T'N M' not incident to T;. Again
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it is easy to check that M is the union of regular neighborhoods of the complexes
T; and T’y along their homeomorphic boundary, which is still a closed connected
surface. It is easy to see that a regular neighborhood of I'; in M is a compression
body, ¢ = 1,2.

This construction suggests the following way of defining a Heegaard splitting
on a 3-manifold with boundary.

Definition 2.9. Suppose that M is a 3-manifold with M =M UGM. A
Heegaard splitting of (M, 8; M, 8, M) is a surface S dividing each component of M
into two compression bodies H; and Ho with 0. H, = ;M and 0_H, = oM.

Remarks. ‘

1) By the above argument, any compact 3-manifold with any division oM =
S M U O M has a Heegaard splitting.

2) A Heegaard splitting Hy Ug H» is said to be trivial if one of H; or Ho is a
trivial compression body, i.e. is homeomorphic to S x I

3) Suppose H; Us Hs is a Heegaard splitting of a 3-manifold (M, 0 M, Oo M),
Then H, is obtained from 8: M x I by attaching 1-handles and H> is obtained from
S = §,H, by attaching 2- and 3-handles. From this point of view a Heegaard
splitting is just a standard handle decomposition of M viewed as a cobordism
between 6; M and d. M .

2.9. Surfaces in 3-manifolds. Henceforth we will, for simplicity, consider
only orientable 3-manifolds and surfaces. Suppose that M is a 3-manifold, P is a
p-manifold properly embedded in M and @ is a g-manifold properly embedded in
M. In the following argument, we shall assume that PNQisa (p+q— 3)-manifold
properly embedded in M. General position means that

1) two 1-manifolds in a 3-manifold are disjoint,

2) the intersection of a 1-manifold and a 2-manifold in a 3-manifold is a finite
set of points.

3) the intersection of two surfaces in a 3-manifold is a 1-manifold.

Definition 2.10. Let F' be a surface.

1) A simple ciosed curve in F is said to be inessential if it divides F into two
components, one of which is a disk; otherwise it is said to be essential.

2) An arc properly embedded in F is said to be inessential if it, together with
some arc on OF, bounds a disk; otherwise it is said to be essential.

The following observations are very useful in studying 3-manifolds.

Let T be a 1-manifold properly embedded in a surface F'.

1) If a component of I is an inessential simple closed curve, then some compo-
nent ¢ of I" bounds a disk in F which is disjoint from I'. « is called an innermost
circle of .

2) If a component of I is an inessential arc, then there is either an innermost
circle or an arc 8 which, together with some arc on &F, bounds a disk in F which
is disjoint from I'. g is called an outermost arc of I".

Definition 2.11. Let T be a surface properly embedded in a 3-manifold M.

1) T is said to be compressible if either T bounds a 3-ball in M, or there is an
essential simple closed curve in T which bounds a disk D in M such that intD is
disjoint from T'; otherwise if is said to be incompressible.
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2) T is said to be H-compressible if there is an essential arc in T' which, together
with some arc in M, bounds a disk D in M such that intD is disjoint from T}
otherwise it is said to be d-incompressible.

3) T is said to be essential if T is incompressible and d-incompressible.

Theorem 2.12 (Loop theorem). Suppose that M is a 3-manifold, T is a
surface properly embedded in M and i is the inclusion map. If i, : m (T) — m (M)
is not injective, then T is compressible.

Remark. In fact a surface 7 not homeomorphic to a 2-sphere is incompressible
in a 3-manifold M if and only if i, : 7 (T) — m (M) is-injective. (The situation
would be a bit more complicated without our ongoing assumption that 7' and M
are orientable.)

Corollary 2.13. Any properly embedded surface T in 53 is compressible.

Proof If T is not homeomorphic to a 2-sphere 52, then 4. : w1 (T) — m(S?)

is not injective. By Theorem 2.12, T" is compressible. If T' is homeomorphic to 52,
then 7" bounds a 3-ball in M. Thus T is compressible.

|

Exercise 2.14. 1) Suppose H is a compression body. Is §_H incompressible
in H?

2) Let T be a surface properly embedded. in a handlebody. Show that either
a) T is a meridian disk or

b) T is compressible or

c¢) T is d-compressible.

3) Suppose T is a surface properly embedded in a compression body H. Show
that either

a) T is a meridian disk or

b) T is compressible or

¢} T is O-compressible or

d} T is a spanning annulus o1

e) T is parallel to some components of 9_H.

Let T be a surface properly embedded in a 3-manifold M. If there is a disk
D in M so that DT = AD. Then there is a 3-ball B® = D x I such that
B3NT = 8D xI. Nowlet T = (T — 8D x I)U D x {0,1}. The process to
obtain 7' from 7T is called doing a 2-surgery on T along D. It is easy to see that
X(T) = x(T) +2.

Definition 2.15. Let M be a 3-manifold. M is said to be reducible if M
contains an incompressible 2-sphere; otherwise it is said to be irreducible.

Let M be a reducible 3-manifold.Suppose P in M is a reducing 2-sphere and
there is a disk D in M such that DN P = 8D. Now let P be the surface obtained
by doing a 2-surgery on P along D. Then P’ contains two components and one of
them is also a reducing 2-sphere of M.

Suppose that M; and M» are two 3-manifolds, and S; is a 2-sphere bounding
a 3-ball B® in M;, i = 1,2. The manifold (M; — intB}) U (M, — intB3), denoted
by Mi# Mo, is called a connected sum of M; and Ms. In fact, any 3-manifold is a
connected sum of irreducible 3-manifolds.
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Theorem 2.16([Kn], [Mil]). Let M be a compact orientable 3-manifold.
Then M = Mi# ... Mp#(S' x §2)# ... #(5! x S?), where each M; is irreducible.
Furthermore, this decomposition is unique.

Proposition 2.17. Suppose that M is irreducible, S and T are incompressible
surfaces in M. Then S and T can be isotoped so that each of circle components of
SN 7T is essential in both surfaces.

Proof. Suppose that one circle component of SN T is inessential in 5. Then
there is a component of § NT, say «, which bounds a disk D in § such that intD
is disjoint from 7. If a is essentzal in T, then T is compressible, a contradiction.
So a bounds a disk D'in T. Thus DU D' is a 2- sphere Since M is irreducible,
DUD bou:uds a 3-ballin M. Now let T = (T —D')UD. Then T is isotopic to T
But |[SNT'| < ]SNT| (by pushing T" slightly). By induction on [SN T, the result
follows.

E]

Definition 2.18. Let M be a 3-manifold. M is said to be d-reducible if there
is an essential simple closed curve in M which bounds a disk in M; otherwise it
is said to be J-irreducible.

Theorem 2.19. Let M be an irreducible, 8-irreducible 3-manifold. S and T
are incompressible, d-incompressible surfaces in M, then S and T' can be isotoped
so that each component of SN 7T is essential in both surfaces.

Proof. By Proposition 2.17, we may assume that each circle of SN T is
essential in both S and T'. Now suppose that one arc « of SNT is inessential in one
of S and T, say S. Then «, together with some arc f; in 85, bounds a disk D in
S. D contains no circle of SN T, because such a circle is inessential in §. Without
loss of generality, we assume that o is outermost in S. Then intD is disjoint from
T Since T is d-incompressible, @, together with some arc Sy in 87T, bounds a disk
D' in T. Thus 1 U B2 bounds a properiy embedded disk DU D in M Since M is
H-irreducible, B U B2 bounds a disk D" m OM. Thus DU D UD" is a 2-sphere
which bounds a 3-ball. Let T° = (T — D YU D. Then T' is isotopic to T, but

|ISNT'| < |SNT| (by pushing T' slightly). By induction {SNT|, the result follows.
O

3. Structures of Heegaard splittings
In this section, we shall study structures of Heegaard splittings.
3.1. Stabilization, reducibility and 8-reducibility.

Definition 3.1. A Heegaard splitting Hy Ug Ha of a 3-manifold M is said to
be stabilized if there are properly embedded disks D; C H; so that |@D1N8Ds| = 1.

Definition 3.2. A Heegaard splitting Hy Ug Hj of a 3-manifold # is sald to
be reducible if there is a 2-sphere P such that [PN S| =1 and PN S is essential in
S.
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Remark.

There is an equivalent definition of a reducible Heegaard splitting F Us Hy.
A Heegaard splitting Hy Us Ha is reducible if and only if there are two properly
embedded disks D; C H; so that 8Dy = 8Ds, and 0D is essential in S.

There is a connection between stabilization and reducibility, given by the fol-
lowing proposition:

Proposition 3.3. Suppose a Heegaard splitting Hy Us Ha is stabilized. Then
either it is reducible or it is the standard genus one splitting of S%.

Proof. Let D; C H; be properly embedded disks so that 8D; NAD, is a single
point. Let B be the union of a bicollar of D; in H; and a bicollar of D3 in H, along
the square in which they intersect. B is a 3-ball whose boundary sphere P can be
moved slightly so that P intersects each H; in a single hemisphere and so that the
curve ¢ = PN S cuts off from S a punctured torus. Unless this curve is inessential
in S the boundary of the 3-ball is a reducing sphere. If the curve is inessential, then
S is a torus dividing M into two solid tori, whose meridians intersect in a single
point. This is the genus one Heegaard splitting of 5%.

O

In the following argument, a new notion is necessary.

Definition 3.4. Let H be a compression body. A spine T of H is a finite
graph in H so that ) NOH = =M. H consists only of valence one vertices and
H deformation retracts to U0 H.

By Definition 3.4, The spine of a compression body is not uniquely defined and
a spine of a handlebody H is a finite graph in H to which H deformation retracts.

Suppose that M has a Heegaard splitting H) Us Ha and M has a Heegaard
splitting H '1 Ugr H; Then the 3-manifold M #M ' has a natural Heegaard splitting
as follows: Let D be a disk in S and D beadiskin S. Let H; = HyUp_p H,
and Hy, = HzUp_p H,. 1t is easy to see that H L and H. , are compression bodies,
and H 1' Ug, ! =8, HY Hfz' is a reducible Heegaard splitting of the manifold M# M.
Now natural question arises: Is any Heegaard splitting of a reducible 3-manifold
reducible? One of the first major theorems on Heegaard splittings, due to Haken,
is that any Heegaard splitting of a reducible manifold is reducible. The theorem is
important not just for what it says, but for the type of argument which is used.

Theorem 3.5([Ha]). Suppose M is a reducible manifold with a Heegaard
splitting H; Us Hz. Then there is a reducing sphere P for M so that PN Sisa
single circle

Proof. There are two ways to prove Haken's theorem. Similar to Haken's
original proof is that given in {J al]. One can assume that P intersects one of the
compression bodies only in disks. "The idea will be to minimize the number of circles
of intersection, under the assumption that P intersects one of the compression
bodies only in disks. If P intersects H only in disks, consider the planar surface
P, = PnH,. Compress and §-compress P, as much as possible. Compressions of A
will convert P into two spheres, at least one of which, say P», is a reducing sphere.
We shall restrict attention to Pp. At the end of this process P, will be converted to
o surface P which is disjoint from a complete collection of meridian disks for H;
(otherwise curves of intersection can be used to compress or d-compress) and, for
any essential curve a in &_ Hy, disjoint from a spanning annuius o x [. It follows
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that P N H, is a collection of disks. What is not obvious, but can be explicitly
calculated, is that the number of disks in P nH | is lower that the original PN Hs.
The process is continued, switching the roles of H; and M, until there is only one
intersection curve.
Another approach is given in [ST2]. The following is a sketch of the proof.
Let 3 be a spine of Ho. Put it transverse to P. Let A be a complete collection
of compressing disks for H; viewed as a O-singular collection of disks in the comple-
ment of . Put A transverse to P. Circles of intersection can be removed, just as
in the previous argument, so that (37 UA)NP becomes a graph I' C P with vertices
NP and edges AN P. Trivial loops of I' can be eliminated at the cost of merely
changing A, and a vertex incident to some edges but no loops can be used to slide
edges of 3 in a way that lowers > ,NP. (This is the hard part to see.) The upshot
is that, eventually, there is guaranteed to be an isolated vertex. This picks out a
meridian p of H; which is disjoint from a complete collection of meridian disks for
H,. If H, is a handlebody this implies that 8y bounds a meridian in Hs and so
H, Ug Hs is reducible. If Hy is merely a compression body, we can only conclude
that there is a d-reducing disk for M which intersects S in a single curve. But we
can surger M along this disk to get a new reducible 3-manifold and continue the
process until an appropriate sphere is found.
0

Corollary 3.6. [Fr] Suppose that M = H; Us H, is a Heegaard splitting
M # 8% and a spine ), for H; has property that some circuit in 3 lies in a 3-ball.
Then S is reducible.

Proof. Let ¢ be a circuit of ¥, which is contained in a 3-ball B? and n(o) is a
regular neighborhood in B?. Then (H; — intn(c)) Us He is a Heegaard splitting of
M = M — intn(o). Since M’ is reducible, by Theorem 3.5, (H1 — inin(o)) Us Ha
is a reducible splitting. Hence H; Ug Ha is also a reducible splitting.

|
Now we give a new notion:

Definition 3.7. A Heegaard splitting M = H; Us Ha is 0-reducible if there
is a -reducing disk for M which intersects S in a single curve.
It suggests the following analogue to Theorem 3.5.

Proposition 3.8. Any Heegaard splitting of a H-reducible 3-manifold is 0-
reducible.

Proof. The proof of this theorem is similar to the one of Theorem 3.5.
0

3.2. Weakly reducibility. In 1987 Casson and Gordon discovered a new
structure on Heegaard splittings which is perhaps less natural than those described
above but which has turned out to be quite useful.

Definition 3.9. A Heegaard splitting #; Us Hj is said to be weakly reducible
if there are essential disks D; C H; so that 8D, and 8D, are disjoint in S; otherwise
it is said to be strongly irreducible.

Proposition 3.10. 1) A reducible Heegaard splitting Hy Us Ha s weakly
reducible.
2) A nontrivial d-reducible Heegaard splitting H; Us Hs is weakly reducible.
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Proof. 1) Let P be a sphere which intersects H; in a disk D;, i = 1,2. Let
&D; x I be a regular neighborhood of 8D; in S. Then 8D; X {D} bounds a disk
in Hy and 8D; x {1} bounds a disk in H». Since 0D; x {0} noD; x {1} = ¢,
H; Ug H,y is weakly reducible.

2) Let D be a O-reducing disk for M = H, Ug Hs which intersects S in a single
curve o. Without loss of generality, we suppose that a bounds a disk in H;. Since
H; Ug H, is nontrivial, there is a meridian disk in H». Such a meridian disk D' can
be found so that D' is disjoint from the spanning annulus D N H,. In particular
then 8D' Na~= ¢. Thus H; Us Hs is weakly reducible.

0

Here are some applications of this structure.

Theorem 3.11([CG]). If M = H; Ug H is a weakly reducible Heegaard
splitting then either HyUg H» is reducible or M contains an incompressible surface.

Proof, Since the splitting is weakly reducible, S can be compressed simul-
taneously in both directions, that is, both into Hp and simultaneously into Hs.
Let A, C Hy and A, C Hy be collections of disjoint meridians in the respective
compression bodies so that 8A; and 94z are disjoint in S and the families 4;
are maximal with respect to this property. (Since H; Us Hp is weakly reducible,
A; # ¢, 1=1,2) That is, if 5; represents the surface in H; obtained by compress-
ing § along A;, then any further compressing disks of 5; into H; will necessazily
have boundaries intersecting the boundaries of the other disk family.

Let § be the surface obtained by compressing S; along As, or, dually, S» along
A;. Then S separate M into the manifolds W; and W3 so that H,, say, can be
recovered from W, by removing some neighborhoods of arcs from Wy (arcs dual to
A») and attaching some 1-handles in W». A helpful and vivid picture is to imagine
H, red and H; blue. The compressions of S to S along the A; cover 5 with both
red and blue spots, two red spots for each disk in A; and two blue spots for each
disk in As. S is recovered from S by attaching red tubes in W, with ends on red
spots and blue tubes in Wy with ends on blue spots

The surface 5 is incompressible in M. To see this, suppose that 5 compresses
into Wi, say. After pushing S slightly into W, we can view S5; as a Heegaard
splitting surface of W1, that is Wy = (Wi N Hi) Us, (Wh N H3) and each of these
pieces is a compression body. The compression of 5 is a O-reduction of W;. By
Proposition 3.8, there is a §-reducing disk D that intersects S in a single curve.
We can take 8D to be disjoint from A; (1. e. the red spots) and, after 2-handle
slides among the Ag, we can make A, disjoint from the annulus D —~ (Wy N Hy).
But then D N H; makes S;, hence also S, compressible in H; via a disk disjoint
from A, contradicting the maximality of A;.

Unless S is a collection of spheres, we are through. Suppose that S is a collection
of spheres. Note that at least one, Sy, has both a red spot and a blue spot. For
otherwise, when S is recovered from S by attaching red and blue tubes, S would
consist of two components: one containing all red tubes and one containing all blue
tubes. Choose in Sy 2 simple closed curve that separates in the sphere So the red
spots from the blue spots. Push the interior of the disk in So that contains the red
spots (resp. blue spots) completely into Hy (resp. Hz). Then 5y is the union of a
red disk and a blue disk along a curve, i. e. it is a reducing sphere for the original
Heegaard splitting.
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[
Note that at the end of the proof of Theorem 3.11 we have 8 dividing M into
two 3-manifolds W, and Wa, each of which inherits a Heegaard splitting surface
(a component of S;) of lower genus than S. This splitting itself may be weakly
reducible and we can continue the process. Ultimately an irreducible Heegaard
splitting M = H,Ug H» can be broken into a series of strongly irreducible splittings
(see [ST3]). That is, we can begin with the handle structure determined by H,Us Hz
and rearrange the order of the 1- and 2-handles, so that

M = Mg Ug, My Uz, U... Ug_ M,

The 1- and 2-handles which occur in A; provide it with a strongly irreducible
splitting A; Up, B; with 8_4; = §;, 8-B;_1 = S; for 1 < i < m, 0_Ag = 8- Hy,
8._B,, = 6_H,. Each component of each 5; is a closed incompressible surface of
positive genus. None of the compression bodies A;, Bi—1,1 < ¢ < mis trivial,
though components of each may be. If 8_4y or 8B, is compressible in M then
Ap or By, is trivial. Such a rearrangement of handles will be called an untelescoping
of the Heegaard splitting.

In 1968 Waldhausen[Wa| showed that any positive genus Heegaard splitting
of 3 is stabilized. That implies that any positive genus Heegaard splitting of 53
is obtained by stabilizing the unique zero splitting into 3-balls. So a Heegaard
splitting of S% is completely determined by its genus. This is the first uniqueness
result. Here is a sketch of the proof of Waldhausen'’s theorem given in [ST2].

Theorem 3.12({Wa]). Every positive genus Heegaard splitting of 5% ig
stabilized.

Proof. Suppose that S® = H; Ugs Hy and 3 is a spine of H;. We may assume
that > is a trivalent graph in 5% and we are allowed to do edge-slides. Choose a
Morse function h : S® —+ [—1,1] which has a single minimum(at height -1) and a
single maximum(at height 1) and which restricts to a Morse function on 3. Pus
S in thin position with respect to this height function. In outline, this means that
you cannot push down a maximum so that it moves below a minimum without
introducing new critical points.

It suffices to show that there is an unknotted cycle ¥ C ). For then § would
also be a Heegaard splitting surface for the solid torus 83 — n(y). By Proposition
3.8, this splitting would necessarily be boundary reducible. That means that the
original splitting S is stabilized.

Consider a complete collection A of meridian disks of H,, extended into Hj,
so that its interior is embedded in-S® — 3" and its (singular) boundary lies in 3.
The first observation is that we may as well assume @A runs across every edge of
S, for otherwise Hy Ug H» would be reducible(see Theorem 3.11). If the splitting
were reducible then a reducing 2-sphere splits S into two Heegaard splittings of S 3
each of smaller positive genus, and we would be done by induction.

Consider when a level sphere S; = h™(t} cuts off from A a subdisk sufficiently
simple that it can be used to slide part of an edge of > so that it lies on 5;. It
is easy t0 see that this is true just below the highest point of 3 and just above
the lowest point. In the former case the disk can be used to lower the maximum
slightly and in the latter to raise the minimum. Suppose we simultaneously have
two subdisks of A, one of which lowers a maximum and the other of which raises a
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minimum. Then either this violates thin position or the two edges which we have
pushed onto the level sphere have the same ends, i. e. they create an unknotted
cycle and we are done.

We know then that a sufficiently high sphere cuts off a subdisk of A lowering
a maximum, a sufficiently low sphere cuts off a subdisk raising a minimum and if
subdisks of both types are cut off simultaneously, then we are done. So it suffices to
eliminate the possibility that neither type occurs, that is, there is a height £y so that
no subdisk cut off by Sg, from A can be used either to raise a minimum or lower a
maximum. But this situation cannot in fact occur, by an ar gument-reminiscent of
the proof of Theorem 3.5, with Sy, playing the role of reducing sphere.

0
Armed with Theorem 3.12 we can prove a sort of converse to Proposition3.3.

Theorem 3.13. Suppose M is an irreducible 3-manifold and HiUs Hyisa
reducible Heegaard splitting of M. Then H; Ug Hy is stabilized.

Proof. Let P be a sphere which intersects S in a single essential circle. Since
M is irreducible, P bounds a 3-ball in M, so the manifold obtained by reducing
M along P is the disjoint union of 53 and a homomorphism of M. The induced
Heegaard splitting of the former is stahilized. Its stabilizing disks, when viewed
back in H, Ug H, show that S was also stabilized.

G

In 1082 W. Jaco gave a famous theorem on handle additions which plays an
important role in studying 3-manifolds. ‘

Theorem 3.14([Ja2]). Suppose M is a compact, orientable, -reducible 3-
manifold and M’ is obtained by attaching a 2-handle to M along a simple closed
curve ¢ in 8M. If M — ¢ is incompressible in M, then M " is -irreducible.

Proof. We denote by T the component of M on which c lies. So M - T
is incompressible in M. Via the untelescoping argument following 3 11, M can be
separated by incompressible surfaces into n 3-manifolds Mi,... ,M,,n > 1, such
that

1) M, is a compression body with 8. M, =T, and

2) M; is O-irreducible, 2 <1 < 7.

We denote by M ; the manifold obtained by attaching a 2-handle to M7 along
c. Since 8M;(2 < i < n) is incompressible in M, M " is H-reducible if and only if
M, is 8-reducible.

Note that there is a natural Heegaard splitting A Ur B of M ; such that

1) A= M1 with 6+A s T, and

9) B is obtained from T' x I by attaching a 2-handle along ¢ x {0} on T x {0}
with 3+B =T X {1}.

Now suppose, otherwise, that Mi is O-reducible. By Propositions 3.8 and 3.10,
A Ug B is weakly reducible. Thus there are two disks Dy C A and D» C B such
that 8D); and 8D are disjoint in T'. There are two possibilities on 8Ds:

1) 8D, is isotopic to c, and

2) 8D is coplanar to ¢, that is, ADs is separating in T'x { 1} and one component
of T x {1} — cU 8D is a planar surface.

For each case, D1 can be isotoped so that 8D, is disjoint from ¢. Thus OM —c¢
is compressible in M, a contradiction.

]
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Proposition 3.15. Suppose AUg B is a strongly irreducible Heegaard splitting
of a 3-manifold and D is a disk in M such that D is transverse to § with 0 C .
Then I} can be isotoped rel 8D so that intDNS = ¢.

Proof. This proof is by induction on {SNintD|. If the interior of D is disjoint
from S there is nothing to prove. If S — D has any disk components D) then, by
replacing the subdisk of D bounded by &D' by a parallel copy of D' we can decrease
|S M intD|. So we may assume that each simple closed curve in SN D is essential
inS.

A disk component of D — S compresses S in one of the two compression bodies,
say A. Then by strong irreducibility of S, all the disk components of DS liein A.
If any pair of curves of DN S are nested in D then the outer curve of the innermost
such pair cuts off a component P of D — § so that all but one of the curves in 9P
are adjacent to disks in A and precisely one, denoted by a, is not Compress S into
A along 2-handles whase cores are the disks with boundaries on gP. Let M_ be
the manifold obtained from B by attaching these 2-handles to B Then o C 0M_ is
inessential in M. so, by strong irreducibility and Proposition 3.8, e is inessential
in OM_. Push the disk bounded by a in M. slightly into H; and obverse that
this is then a disk D" in H; whose boundary is parallel to o in the component of
adjacent to P across a. Replacing the subdisk of D bounded by a with D" lowers
IS NintD].

{1

Proposition 3.16. Let AUg B be a strongly irreducible Heegaard splitting
of a 3-manifold M, and let T be a surface in M and P be a closed incompressible
surface in M. Then

1) P can be isotoped so that no circle of PNT is inessential in T'.

2) S can be isotoped so that SN T can not contain two circles which are
inessential and nested in T'.

Furthermore, if T is incompressible in M, then
3) P can be isotoped so that each circle of PN T is essential in both P and T
4) S can be isotoped so that each circle of SNT is essential in both S and T'.

Proof. 1) Suppose that P’ is a surface isotopic to P such that |P' NnTiis
minimal among all the surfaces isotopic to P. Suppose, otherwise, that one circle
cof P NT is inessential in T. Without loss of generality, we assume that ¢ bounds
a disk in 7 such that intD is disjoint from FP'. Since P’ is incompressible, ¢ also
bounds a disk D' in P. Let P° = (P = D)uD. Since AUs B is a strongly
irreducible Heegaard splitting of M, M is irreducible. Hence D U D' bounds a
3.ball in M. That means that P is isotopic to P', but [P NT| < [P' nT| (by
pushing P slightly ), a contradiction.

2) This proof is similar, using Lemma 3.15.

3) This is similar to the proof of 1).

4) Let 5", be a spine of 4 and ) 5 be 2 spine of B. Then M — (> aUdg)is
homeomorphic to S x (0,1). Without loss of generality, we assume that YoaYlg
are in general position with 7. If one of ), and > p, say Y. 4, is disjoint from
T, then we are done by taking S = (L 4). If neither is disjoint, denote by S; the
surface S x {t} and observe that for small ¢, T — S5 contains a meridian disk for
4 and T ~ S;... contains a meridian disk for B. For no t can it be true that T — S
contains meridian disks for both 4 and B, since the splitting is strongly irreducible.
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Tt follows (with a little bit of argument about non-generic points) that there is a
generic value for t so that T ~ S; contains no meridian disks for either A or B. In
particular, any component of T'N S; that is inessential in T is also inessential in
S, and so can be eliminated by an isotopy of S;. Since T is incompressible, any
component of 7'M S; that is inessential in S5; would also have been inessential in T".
So after these isotopies, T and S; intersect only in curves that are essential in both
surfaces.

&

4. An application to knot theory

In this section, we shall introduce an application of structures on Heegaard
splittings. The following notions are necessary.

Definition 4.1. Let K be a knot in S®. A system of arcs attached to K are
tunnels on K. If their complement is a handlebody then it is called an unknotting
system of tunnels. The number, denoted by t(K), of tunnels contained in a minimal
collection of unknotting tunnels is called the tunnel number of K.

Definition 4.2. Suppose that K and K, are two knots which lie in the
distinct sides of a 2-sphere S% in §%. Let b: I x I —+ S° be an embedding map
such that oI x I)NK; = b(I x {0}), b(I x NN K> = b(I x {1} and B{IXI)NSy =
(I x {1/2}). Then the knot (K3 — b(I x {0}) UbB(BI x I} U (K2 — b(I X {11},
denoted by K1# K>, is called a composite knot. ‘

Remark.

Let K = K4 K>, and 4; be an annulus on B(S® —intn(K;) whose core bounds
a disk in n(K;), ¢ = 1,2. Then S® — intn(K) is homeomorphic to the manifold
(8% — intn(K1)) U, =4, (S* — intn(K>3)), and A; is essential in S° — inin(K).

Theorem 4.3.([SS]) Suppose that K1,... , XK, are n prime knots in §°, and
K =Ki#...#K, Then t{K) > n.

Proof: Let a1, ... ,0; be a minimal system of unknotting tunnels. Then §°% —
intn(K U (Ua;)) is a handlebody. Let S = 8n(K U (Ug;)). Then S is a Heegaard
splitting of §. Tt is easy to see that S is also a Heegaard splitting of My =
53 —p(K). We denote by g the genus of S. Since t = g—1, —x(S)} = 2t. We denote
by J{H) the number of 1-handles in a compression body H.

Fact 1. J(H) = (x(6-H) — x(0;H))/2.

Now suppose that A Ug B is a Heegaard splitting of Mg, and

(A; Us, B;) Up U... UF, (Am Us,. Bm)

is an untelescoping of AUgs B. Then
J(A) =S J(4) = (S x(F) - 3 x(8))/2 = -x(8)/2 =t
1 1 1

where Fy = 0_A;.
Since K = Kz# - ~#Km

S8 e (K} = Wi Uy, WoU .. Uy, _, Wn

where W; = 5% — p(K;) and a; is an annulus.
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Since an incompressible surface in a compression body is d-compressible or a
spanning annulus, one can prove the following fact.

Fact 2. If a is a system of incompressible annuli in a compression body H
and X is a component of H — a, then

1) X is a compression body, and

D x(@LHNXY < x(O_HNX).

Fact 3. Let L be a prime knot in S% and a be an meridian annulus in §%—n{L).
Then ¢ is isotopic to 8(S%,n(L)) rel da.

By Proposition 3.15, F; and S; can be isotoped so that they intersect a; only
in essential curves. Since F; and S; are separating in M, |F; Na;| and |S; Na;| are
even. Hence x{F; N W;) and x(S; N Wj) is even.

Let i = —x(FiNW;)/2, yiy = —x(S: " W;)/2. Then } . yi; = —x(5:), and.
zj zi; = —x(F;). Since F; and S; intersect a; in essential curves, the following
fact follows:

Fact 4. 0 <2y <y, 05 2515 S yi5e

Iz =yy; = 0for 1 €1 < m then, for each 4, F; and S; intersect W;
only in annuli. Thus one component of the complement is homeomorphic to Wj.
That means that W; is contained in a compression body. Hence K; is trivial, a
contradiction. Thus the following fact follows:

Fact 5. For each j, there exists ¢ such that y;; # 0.

Now we claim that, for each j, >, ui; > >, Zyj.

If, for each i, z;; = 0, then, by Fact 5, > yi; > 2 @i;. If there exists ¢ such
that z;; # 0, then, using Fact 2 and Fact 3, one can prove that > yi; > 3 zi;.

Now > ,%ij > 2.; %i; + 1 and 3. (yi; — z45) 2 n. Hencet > n.
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