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Abstract. In this paper, we consider the different condition numbers for simple eigenvalues of
matrix polynomials used in the literature and we compare them. One of these condition numbers
is a generalization of the Wilkinson condition number for the standard eigenvalue problem. This
number has the disadvantage of only being defined for finite eigenvalues. In order to give a unified
approach to all the eigenvalues of a matrix polynomial, both finite and infinite, two (homogeneous)
condition numbers have been defined in the literature. In their definition, very different approaches
are used. One of the main goals of this note is to show that, when the matrix polynomial has a
moderate degree, both homogeneous condition numbers are essentially the same and one of them
provides a geometric interpretation of the other. We also show how the homogeneous condition
numbers compare with the “Wilkinson-like” eigenvalue condition number and how they extend this
condition number to zero and infinite eigenvalues.
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1. Introduction. Let C denote the field of complex numbers. A square matrix
polynomial of grade k can be expressed (in its non-homogeneous form) as

P (λ) =

k∑
i=0

λiBi, Bi ∈ Cn×n, (1.1)

where the matrix coefficients, including Bk, are allowed to be the zero matrix. In
particular, when Bk 6= 0, we say that P (λ) has degree k. Throughout the paper, the
grade of every matrix polynomial P (λ) will be assumed to be its degree unless it is
specified otherwise.

The (non-homogeneous) polynomial eigenvalue problem (PEP) associated with a
regular matrix polynomial P (λ), (that is, det(P (λ)) 6= 0) consists of finding scalars
λ0 ∈ C and nonzero vectors x, y ∈ Cn satisfying

P (λ0)x = 0 and y∗P (λ0) = 0.

The vectors x and y are called, respectively, a right and a left eigenvector of P (λ)
corresponding to the eigenvalue λ0. In addition, P (λ) may have infinite eigenvalues.
We say that P (λ) has an infinite eigenvalue if 0 is an eigenvalue of the reversal of
P (λ), where the reversal of a matrix polynomial P (λ) of grade k is defined as

rev(P (λ)) := λkP (1/λ) . (1.2)
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In order to define finite and infinite eigenvalues in a unified way, it is convenient
to express a matrix polynomial in homogeneous form, that is,

P (α, β) =

k∑
i=0

αiβk−iBi. (1.3)

Then, if P (α, β) is regular, we can consider the corresponding homogeneous PEP that
consists in finding pairs of scalars (α0, β0) 6= (0, 0) and nonzero vectors x, y ∈ Cn such
that

P (α0, β0)x = 0 and y∗P (α0, β0) = 0. (1.4)

We note that the pairs (α0, β0) satisfying (1.4) are those for which det(P (α0, β0)) = 0
holds. Notice that (α0, β0) satisfies det(P (α0, β0)) = 0 if and only if det(P (cα0, cβ0)) =
0 for any nonzero complex number c. Therefore, it is natural to define an eigenvalue
of P (α, β) as any line in C2 passing through the origin consisting of solutions of
det(P (α, β)) = 0. For simplicity, we denote such a line, i.e., an eigenvalue of P (α, β),
as (α0, β0) and by [α0, β0]T a specific (nonzero) representative of this eigenvalue. The
vectors x, y in (1.4) are called, respectively, a right and a left eigenvector of P (α, β)
corresponding to the eigenvalue (α0, β0). For β 6= 0, we can define λ = α/β and find
a relationship between the homogeneous and the non-homogeneous expressions of a
matrix polynomial P of grade k as follows:

P (α, β) = βkP (λ).

We note also that, if (y, λ0, x) is a solution of the non-homogeneous PEP, i.e.,
an eigentriple of the non-homogeneous PEP, then (y, (α0, β0), x) is a solution of the
corresponding homogeneous PEP, for any nonzero [α0, β0]T such that λ0 = α0/β0,
including λ0 =∞ for β0 = 0.

The numerical solution of the (homogeneous and non-homogeneous) PEP has
received considerable attention from many research groups in the last two decades and,
as a consequence, several condition numbers for (simple and multiple) eigenvalues of
a matrix polynomial P have been defined in the literature to determine the sensitivity
of these eigenvalues to perturbations in the coefficients of P [3, 4, 8, 9, 12]. Although
several different eigenvalue condition numbers (in the homogeneous and the non-
homogeneous formulation) are available in the literature for simple eigenvalues, as far
as we know only one definition of condition number for multiple eigenvalues (in the
non-homogeneous formulation) has been considered so far. Our goal in this paper is
to compare distinct eigenvalue condition numbers. This is the reason why we focus on
the condition numbers of simple eigenvalues, aside of the fact that simple eigenvalues
are essentially the only ones appearing in the numerical practice due to the effect of
the finite arithmetic of the computer.

One of the condition numbers for simple eigenvalues, defined for matrix poly-
nomials expressed in the non-homogeneous form, is a natural generalization of the
Wilkinson condition number for the standard eigenproblem (see Definition 2.1). A
disadvantage of this eigenvalue condition number is that it is not defined for infinite
eigenvalues. Then, in order to study the conditioning of all the eigenvalues of a ma-
trix polynomial in a unified framework, other condition numbers are considered in the
literature. These condition numbers assume that the matrix polynomial is expressed
in homogeneous form.
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Two homogeneous eigenvalue condition numbers (well defined for all the eigenval-
ues of P (α, β), finite and infinite) have been presented in the literature. One of them
is a natural generalization of the condition number defined by Stewart and Sun in
[11, Chapter VI, Section 2.1] for the eigenvalues of a pencil. This condition number is
defined in terms of the chordal distance between two lines in C2 (see Definition 2.12).
The other homogeneous eigenvalue condition number is the norm of a differential op-
erator that is constructed making use of the Implicit Function Theorem [3, 4]. The
definition of this condition number is very involved and less intuitive than the defini-
tion of the other condition numbers that we consider in this paper. For an explicit
formula for this condition number, see Theorem 2.6.

In this paper we address the following natural questions:

• how are the two homogeneous eigenvalue condition numbers related? Are
they equivalent?

• if λ0 is a finite nonzero eigenvalue of a matrix polynomial P (λ) and (α0, β0)
is the associated eigenvalue of P (α, β) (that is, λ0 = α0/β0), how are the
(non-homogeneous) absolute and relative eigenvalue condition numbers of λ0
and the (homogeneous) condition numbers of (α0, β0) related? Are these two
types of condition numbers equivalent in the sense that λ0 is ill-conditioned
if and only if (α0, β0) is ill-conditioned?

Partial answers to these questions are scattered in the literature written in an
implicit way so that they seem to be unnoticed by most researchers in Linear Alge-
bra. Our goal is to present a complete and explicit answer to these questions. More
precisely, we provide an exact relationship between the two homogeneous eigenvalue
condition numbers and we use this relationship to prove that they are equivalent.
Also, we obtain exact relationships between each of the non-homogeneous (relative
and absolute) and the homogeneous eigenvalue condition numbers. From these re-
lationships we prove that the non-homogeneous condition numbers are always larger
than the homogeneous condition numbers. This means that non-homogenous eigen-
values λ0 are always more sensitive to perturbations than the corresponding homo-
geneous ones (α0, β0), which is natural since λ0 = α0/β0. Moreover, we will see
that non-homogeneous eigenvalues with large or small moduli have much larger non-
homogeneous than homogeneous condition numbers. Thus, in these cases, (α0, β0)
can be very well-conditioned and λ0 be very ill-conditioned. In the context of this
discussion, it is important to bear in mind that in most applications of PEPs the
quantities of interest are the non-homogeneous eigenvalues, and not the homogeneous
ones.

The paper is organized as follows: Section 2 includes the definitions and expres-
sions of the different condition numbers that are used in this work. In section 3, we
establish relationships between the condition numbers introduced in section 2, and in
section 4 we present a geometric interpretation of these relationships. Section 4 also
includes a study of the computability of small and large eigenvalues. Finally, some
conclusions are discussed in section 5.

2. Eigenvalue condition numbers of matrix polynomials. In this section
we recall three eigenvalue condition numbers of simple eigenvalues used in the liter-
ature and discuss some of the advantages and disadvantages of each of them. We
note that these are normwise condition numbers. When the coefficients of a matrix
polynomial have very specific entrywise structures (such as the pencils considered in
[13]), it might be more convenient to consider entrywise condition numbers, as those
defined in [6] for pencils, so that entrywise structured perturbations are used. Since
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entrywise condition numbers have not received attention so far in recent research on
matrix polynomials, we do not study entrywise condition numbers in this work.

Before recalling the definition of the eigenvalue condition numbers that we study
in this paper, we present some notation that will be used throughout the paper.

Let a and b be two integers. We define

a : b =

{
a, a+ 1, a+ 2, . . . , b, if a ≤ b,

∅, if a > b.

For any matrix A, ‖A‖2 denotes its spectral or 2-norm, i.e., its largest singular value
[11]. For any vector x, ‖x‖2 denotes its standard Euclidean norm, i.e., ‖x‖2 =
(x∗x)1/2, where the operator ()∗ stands for the conjugate-transpose of x.

2.1. Non-homogeneous eigenvalue condition numbers. Next we recall the
definition of two versions (absolute and relative) of a normwise eigenvalue condition
number introduced in [12].

Definition 2.1. Let λ0 be a simple, finite eigenvalue of a regular matrix polyno-
mial P (λ) =

∑k
i=0 λ

iBi of grade k and let x be a right eigenvector of P (λ) associated
with λ0. We define the normwise absolute condition number κa(λ0, P ) of λ0 by

κa(λ0, P ) := lim
ε→0

sup

{
|∆λ0|
ε

: [P (λ0 + ∆λ0) + ∆P (λ0 + ∆λ0)](x+ ∆x) = 0,

‖∆Bi‖2 ≤ ε ωi, i = 0 : k

}
,

where ∆P (λ) =
∑k
i=0 λ

i∆Bi and ωi, i = 0 : k, are nonnegative weights that allow
flexibility in how the perturbations of P (λ) are measured.

For λ0 6= 0, we define the normwise relative condition number κr(λ0, P ) of λ0 by

κr(λ0, P ) := lim
ε→0

sup

{
|∆λ0|
ε|λ0|

: [P (λ0 + ∆λ0) + ∆P (λ0 + ∆λ0)](x+ ∆x) = 0,

‖∆Bi‖2 ≤ ε ωi, i = 0 : k

}
.

We will refer to κa(λ0, P ) and κr(λ0, P ), respectively, as the absolute and rel-
ative non-homogeneous eigenvalue condition numbers. Note that the absolute non-
homogeneous condition number is not defined for infinite eigenvalues while the relative
condition number is not defined for zero or infinite eigenvalues.

Remark 2.2. In the definitions of κa(λ0, P ) and κr(λ0, P ), the weights ωi can be
chosen in different ways. The most common ways are: 1) ωi = ‖Bi‖2 for i = 0, 1, . . . , k
(relative coefficient-wise perturbations); 2) ωi = max

j=0:k
{‖Bj‖2} for i = 0, 1, . . . , k (rel-

ative perturbations with respect to the norm of P (λ)); 3) ωi = 1 for i = 0, 1, . . . , k
(absolute perturbations).

An explicit formula for each of the non-homogeneous eigenvalue condition num-
bers presented above was obtained by Tisseur in [12].

Theorem 2.3. Let P (λ) be a regular matrix polynomial of grade k. Let λ0 be a
simple, finite eigenvalue of P (λ) and let x and y be, respectively, a right and a left
eigenvector of P (λ) associated with λ0. Then,

κa(λ0, P ) =
(
∑k
i=0 |λ0|iωi)‖y‖2‖x‖2
|y∗P ′(λ0)x|

,
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where P ′(λ) denotes the derivative of P (λ) with respect to λ. For λ0 6= 0,

κr(λ0, P ) =
(
∑k
i=0 |λ0|iωi)‖y‖2‖x‖2
|λ0||y∗P ′(λ0)x|

.

The following technical result will be useful for the comparison of the non-
homogeneous condition numbers introduced above and the homogeneous condition
numbers that we introduce in the next subsection. We will use the concept of reversal
of a matrix polynomial defined in (1.2).

Lemma 2.4. Let P (λ) =
∑k
i=0 λ

iBi be a regular matrix polynomial. Let λ0 be a
simple, nonzero, finite eigenvalue of P (λ). Then,

κa

(
1

λ0
, revP

)
=
κr(λ0, P )

|λ0|
and κr

(
1

λ0
, revP

)
= κr(λ0, P ).

Proof. We only prove the first claim. The second claim follows immediately from
the first.

Let x and y be, respectively, a right and a left eigenvector of P (λ) associated with
λ0. It is easy to see that these vectors are also a right and a left eigenvector of revP
associated with 1

λ0
. Notice that

κa

(
1

λ0
, revP

)
=

(
∑k
i=0

∣∣∣ 1
λ0

∣∣∣k−i ωi)‖x‖2‖y‖2
|y∗(revP )′( 1

λ0
)x|

=
(
∑k
i=0 |λ0|

i
ωi)‖x‖2‖y‖2

|λ0|k|y∗(revP )′( 1
λ0

)x|
=

(
∑k
i=0 |λ0|

i
ωi)‖x‖2‖y‖2

|λ0|2|y∗λk−20 (revP )′( 1
λ0

)x|

=
(
∑k
i=0 |λ0|

i
ωi)‖x‖2‖y‖2

|λ0|2|y∗P ′(λ0)x|
=
κr(λ0, P )

|λ0|
,

where the fourth equality follows from the facts that revP (λ) = λkP ( 1
λ ) and P (λ0)x =

0, and the first and fifth equalities follow from Theorem 2.3. Thus, the claim follows.

2.2. Homogeneous eigenvalue condition numbers. As pointed out in the
last subsection, neither of the non-homogeneous condition numbers is defined for
infinite eigenvalues. Thus, these type of eigenvalues require a special treatment in
the non-homogeneous setting. In this section we introduce two condition numbers
that allow a unified approach to all eigenvalues, finite and infinite. These condition
numbers require the matrix polynomial to be expressed in homogeneous form (see
(1.3)). This is the reason why we refer to them as homogeneous eigenvalue condition
numbers.

Remark 2.5. We recall that (α0, β0) 6= (0, 0) is an eigenvalue of P (α, β) if and
only if λ0 := α0/β0 is an eigenvalue of P (λ), where λ0 =∞ if β0 = 0.

Each of the condition numbers presented in this subsection has been defined in
the literature with a different approach. As explained in Section 1, one of them is
due to Stewart and Sun [11] and the other one, inspired by Shub and Smale’s work
[10], is due to Dedieu and Tisseur [3, 4]. Neither of these two condition numbers has
a specific name in the literature. We will refer to them as the Stewart-Sun condition
number and the Dedieu-Tisseur condition number, respectively.
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2.2.1. Dedieu-Tisseur condition number. The homogeneous eigenvalue con-
dition number that we present in this section has been often used in recent literature
on matrix polynomials as an alternative to the non-homogeneous Wilkinson-like con-
dition number. See, for instance, [5, 7]. We do not include its explicit definition
because it is much more involved than Definition 2.1. For the interested reader, the
definition can be found in [4]. The next theorem provides an explicit formula for this
condition number.

Theorem 2.6. [4, Theorem 4.2] Let (α0, β0) be a simple eigenvalue of the regular

matrix polynomial P (α, β) =
∑k
i=0 α

iβk−iBi, and let y and x be, respectively, a left
and a right eigenvector of P (α, β) associated with (α0, β0). Then, the Dedieu-Tisseur
condition number of (α0, β0) is given by

κh((α0, β0), P ) =

(
k∑
i=0

|α0|2i|β0|2(k−i)ω2
i

)1/2

‖y‖2‖x‖2
|y∗(β0DαP (α0, β0)− α0DβP (α0, β0))x|

,

(2.1)
where Dz ≡ ∂

∂z , that is, the partial derivative with respect to z ∈ {α, β}, and ωi,
i = 0 : k, are nonnegative weights that define how the perturbations of the coefficients
Bi are measured.

It is important to note that the expression for this eigenvalue condition number
does not depend on the choice of representative for the eigenvalue (α0, β0).

2.2.2. Stewart-Sun condition number. Here we introduce another homoge-
neous eigenvalue condition number. Its definition is easy to convey and to interpret
from a geometrical point of view.

We recall that every eigenvalue of a homogeneous matrix polynomial can be seen
as a line in C2 passing through the origin. The condition number that we present
here uses the “chordal distance” between lines in C2 to measure the distance between
an eigenvalue and a perturbed eigenvalue. This distance is defined on the projective
space P1(C).

Before introducing the chordal distance, we recall the definition of angle between
two lines.

Definition 2.7. Let x and y be two nonzero vectors in C2 and let 〈x〉 and 〈y〉
denote the lines passing through zero in the direction of x and y, respectively. We
define the angle between the two lines 〈x〉 and 〈y〉 by

θ(〈x〉, 〈y〉) := arc cos
|〈x, y〉|
‖x‖2‖y‖2

, 0 ≤ θ(〈x〉, 〈y〉) ≤ π/2,

where 〈x, y〉 denotes the standard Hermitian inner product, i.e., 〈x, y〉 = y∗x.
Remark 2.8. We note that cos θ(〈x〉, 〈y〉) can be seen as the ratio between the

length of the orthogonal projection (with respect to the standard inner product in
C2) of the vector x onto y to the length of the vector x itself, that is,

cos θ(〈x〉, 〈y〉) =
‖projyx‖2
‖x‖2

,

since

projyx =
〈x, y〉y
‖y‖22

and
‖projyx‖2
‖x‖2

=
|〈x, y〉|
‖x‖2‖y‖2

.
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We also have

sin θ(〈x〉, 〈y〉) =
‖x− projyx‖2

‖x‖2
.

The definition of chordal distance is given next.
Definition 2.9. [11, Chapter VI, Definition 1.20] Let x and y be two nonzero

vectors in C2 and let 〈x〉 and 〈y〉 denote the lines passing through zero in the direction
of x and y, respectively. The chordal distance between 〈x〉 and 〈y〉 is given by

χ(〈x〉, 〈y〉) := sin(θ(〈x〉, 〈y〉)).

Notice that χ(〈x〉, 〈y〉) ≤ θ(〈x〉, 〈y〉). Moreover, the chordal distance and the angle
are identical asymptotically, that is, when θ(〈x〉, 〈y〉) approaches 0.

The chordal distance between two lines 〈x〉 and 〈y〉 in C2 can also be expressed
in terms of the coordinates of the vectors x and y in the canonical basis for C2. Note
that this expression does not depend on the representatives x and y of the lines.

Lemma 2.10. [11, page 283] If 〈α, β〉 and 〈γ, δ〉 are two lines in C2, then

χ(〈α, β〉, 〈γ, δ〉) =
|αδ − βγ|√

|α|2 + |β|2
√
|γ|2 + |δ|2

.

Remark 2.11. Notice that 0 ≤ χ(〈α, β〉, 〈γ, δ〉) ≤ 1 for all lines 〈α, β〉, 〈γ, δ〉 in
C2. Since the line 〈1, 0〉 is identified with the eigenvalue ∞ in PEPs, we see that the
chordal distance allows us to measure the distance from ∞ to any other eigenvalue
very easily. Moreover, such distance is never larger than one.

Next we introduce the homogeneous eigenvalue condition number in which the
change in the eigenvalue is measured using the chordal distance and that we baptize as
the Stewart-Sun eigenvalue condition number. This condition number was implicitly
introduced for matrix pencils in [11, page 294], although an explicit definition is not
given in [11]. See also [1, page 40] for an explicit definition of this condition number
for matrix polynomials.

Note that in Definition 2.12 below, (α0,+∆α0, β0 + ∆β0) is the unique simple
eigenvalue of (P + ∆P )(α, β) that approaches (α0, β0) when ∆P approaches zero.

Definition 2.12. Let (α0, β0) be a simple eigenvalue of a regular matrix polyno-

mial P (α, β) =
∑k
i=0 α

iβk−iBi of grade k and let x be a right eigenvector of P (α, β)
associated with (α0, β0). We define

κθ((α0, β0), P ) := lim
ε→0

sup

{
χ((α0, β0), (α0 + ∆α0, β0 + ∆β0))

ε
:

[P (α0 + ∆α0, β0 + ∆β0) + ∆P (α0 + ∆α0, β0 + ∆β0)](x+ ∆x) = 0,

‖∆Bi‖2 ≤ εωi, i = 0 : k

}
,

where ∆P (α, β) =
∑k
i=0 α

iβk−i∆Bi and ωi, i = 0 : k, are nonnegative weights that
allow flexibility in how the perturbations of P (α, β) are measured.

As far as we know, no explicit formula for the Stewart-Sun condition number is
available in the literature. We provide such an expression next.
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Theorem 2.13. Let (α0, β0) 6= (0, 0) be a simple eigenvalue of P (α, β) =
∑k
i=0 α

i

βk−iBi, and let x and y be, respectively, a right and a left eigenvector of P (α, β)
associated with (α0, β0). Then,

κθ((α0, β0), P ) =

(
k∑
i=0

|α0|i|β0|k−iωi

)
‖y‖2‖x‖2

|y∗(β0DαP (α0, β0)− α0DβP (α0, β0))x|
,

(2.2)
where Dz ≡ ∂

∂z , that is, the partial derivative with respect to z ∈ {α, β}.
Proof. Let (P+∆P )(α, β) be a small enough perturbation of P (α, β). Then, (P+

∆P )(α, β) has a unique simple eigenvalue (α̃0, β̃0), with associated eigenvector x+∆x,
that approaches (α0, β0) when ∆P (α, β) approaches zero. Since {[α0, β0]T , [−β0, α0]T }
is an orthogonal basis for C2 (with respect to the standard inner product), we can
choose a representative for (α̃0, β̃0) of the form

[α0, β0]T + [∆α0,∆β0]T ,

where 〈[α0, β0]T , [∆α0,∆β0]T 〉 = 0 for any given representative [α0, β0]T of (α0, β0).
This implies that there exists a scalar h such that

[∆α0,∆β0]T = h[−β0, α0]T . (2.3)

Expanding for these representatives the left hand side of the constraint

[P (α0 + ∆α0, β0 + ∆β0) + ∆P (α0 + ∆α0, β0 + ∆β0)](x+ ∆x) = 0

in the definition of κθ((α0, β0), P ) and keeping only the first order terms, we get

[DαP (α0, β0)∆α0 +DβP (α0, β0)∆β0]x+ P (α0, β0)∆x+ ∆P (α0, β0)x = O(ε2).

If we multiply the previous equation by y∗ on the left, taking into account that y is
a left eigenvector of P (α, β) associated with (α0, β0), we get

y∗[DαP (α0, β0)∆α0 +DβP (α0, β0)∆β0]x+ y∗∆P (α0, β0)x = O(ε2). (2.4)

Using (2.3), (2.4) becomes

y∗[DαP (α0, β0)hβ0 −DβP (α0, β0)hα0]x− y∗∆P (α0, β0)x = O(ε2).

Since (α0, β0) 6= 0 is a simple eigenvalue, by [4, Theorem 3.3],

y∗[DαP (α0, β0)β0 −DβP (α0, β0)α0]x 6= 0.

Therefore,

h =
y∗∆P (α0, β0)x

y∗[β0DαP (α0, β0)− α0DβP (α0, β0)]x
+O(ε2). (2.5)

On the other hand,

χ((α0, β0), (α0 + ∆α0, β0 + ∆β0))

ε
=

|α0∆β0 − β0∆α0|
ε
√
|α0|2 + |β0|2

√
|α0 + ∆α0|2 + |β0 + ∆β0|2

=
|h|
ε

√
|α0|2 + |β0|2√

|α0 + ∆α0|2 + |β0 + ∆β0|2
. (2.6)
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Since, by (2.5),

|h|
ε
≤

(
k∑
i=0

|α0|i|β0|k−iωi

)
‖y‖2‖x‖2

|y∗(β0DαP (α0, β0)− α0DβP (α0, β0))x|
+O(ε) (2.7)

and ∆α0 and ∆β0 approach zero as ε→ 0, from (2.6) and (2.7) we get

κθ((α0, β0), P ) ≤

(
k∑
i=0

|α0|i|β0|k−iωi

)
‖y‖2‖x‖2

|y∗(β0DαP (α0, β0)− α0DβP (α0, β0))x|
.

Now we need to show that this upper bound on the Stewart-Sun condition number
can be attained. Let

∆Bi = sgn(α0
i)sgn(β0

k−i
)εωi

yx∗

‖x‖2‖y‖2
, i = 0 : k,

where sgn(z) = z
|z| if z 6= 0 and sgn(0) = 0. Note that, with this definition of ∆Bi,

we have

‖∆Bi‖2 = εωi, i = 0 : k, and |y∗∆P (α0, β0)x| = ε

(
k∑
i=0

|α0|i|β0|k−iωi

)
‖x‖2‖y‖2.

Thus, the inequality in (2.7) becomes an equality and the result follows.

3. Comparisons of eigenvalue condition numbers of matrix polynomi-
als. In this section we provide first a comparison between the Dedieu-Tisseur and
Stewart-Sun homogeneous condition numbers and, as a consequence, we prove that
these condition numbers are equivalent up to a moderate constant depending only on
the degree of the polynomial. Then we compare the Stewart-Sun condition number
with the non-homogeneous condition number in both its absolute and relative version;
as a result, we see that these condition numbers can be very different in certain situ-
ations. A simple geometric interpretation of these differences is given in Section 4. In
the literature some comparisons can be found, as we will point out, but they provide
inequalities among the condition numbers while our expressions are equalities.

3.1. Comparison of the Dedieu-Tisseur and Stewart-Sun condition num-
bers. As mentioned earlier, the Dedieu-Tisseur and the Stewart-Sun homogeneous
condition numbers are defined following a very different approach. So it is a natural
question to determine how they are related. We start with a result known in the
literature.

Theorem 3.1. [3, Section 7][1, Corollary 2.6] Let (α0, β0) 6= (0, 0) be a sim-

ple eigenvalue of a regular matrix polynomial P (α, β) =
∑k
i=0 α

iβk−iBi of grade k.
Assuming that the same weights ωi are considered for both condition numbers, we have

κθ((α0, β0), P ) ≤ Cκh((α0, β0), P ),

for some constant C.
To provide an exact relationship between the Dedieu-Tisseur and the Stewart-Sun

homogeneous condition numbers, we simply use the explicit formulas given for them
in Theorems 2.6 and 2.13, respectively.



10 L.M. Anguas, M.I. Bueno, and F.M. Dopico

Theorem 3.2. Let (α0, β0) 6= (0, 0) be a simple eigenvalue of P (α, β) =
∑k
i=0 α

i

βk−iBi. Then,

κh((α0, β0), P ) =

(∑k
i=0 |α0|2i|β0|2(k−i)ω2

i

)1/2
∑k
i=0 |α0|i|β0|k−iωi

κθ((α0, β0), P ).

The following result is an immediate consequence of Theorem 3.2 and shows that,
for moderate k, both homogeneous condition numbers are essentially the same.

Corollary 3.3. Let (α0, β0) 6= (0, 0) be a simple eigenvalue of P (α, β) =∑k
i=0 α

iβk−iBi. Then,

1√
k + 1

≤ κh((α0, β0), P )

κθ((α0, β0), P )
≤ 1.

Proof. Let v := [|β0|kω0, |α0||β0|k−1ω1, . . . , |α0|kωk]T ∈ Rk+1. From Theorem
3.2, we have

κh((α0, β0), P )

κθ((α0, β0), P )
=
‖v‖2
‖v‖1

,

where ‖.‖1 denotes the vector 1-norm [11]. The result follows taking into account the
fact that 1/

√
k + 1 ≤ ‖v‖2/‖v‖1 ≤ 1.

Since the Dedieu-Tisseur and the Stewart-Sun condition numbers are equivalent
and the definition of the Stewart-Sun condition number is much simpler and intuitive,
we do not see any advantage in using the Dedieu-Tisseur condition number. Therefore,
in the next subsection, we focus on comparing the Stewart-Sun condition number with
the non-homogeneous condition numbers. The corresponding comparisons with the
Dedieu-Tisseur condition number follow immediately from Theorem 3.2 and Corollary
3.3.

3.2. Comparison of the homogeneous and non-homogeneous eigenvalue
condition numbers. As we mentioned in Section 2, the main drawback of the non-
homogeneous condition numbers is that they do not allow a unified treatment of all
the eigenvalues of a matrix polynomial since these condition numbers are not defined
for the infinite eigenvalues. Thus, some researchers prefer to use a homogeneous eigen-
value condition number instead, although in most applications the non-homogeneous
eigenvalues λ are the relevant quantities. In this section, we give an algebraic relation-
ship between the Stewart-Sun condition number and the non-homogeneous (absolute
and relative) eigenvalue condition number. We emphasize again that, by Theorem 3.2
and Corollary 3.3, this relation also provides us with a relation between the Dedieu-
Tisseur condition number and the non-homogeneous condition numbers.

We start with the only result we have found in the literature on this topic.
Theorem 3.4. [1, Corollary 2.7] Let (α0, β0) with α0 6= 0 and β0 6= 0 be a simple

eigenvalue of a regular matrix polynomial P (α, β) =
∑k
i=0 α

iβk−iBi of grade k and
let λ0 := α0

β0
. Assuming that the same weights ωi are considered for both condition

numbers, there exists a constant C such that

κr(λ0, P ) ≤ C 1 + |λ0|2

|λ0|
κh((α0, β0), P ).
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The next theorem is the main result in this section and provides exact relation-
ships between the Stewart-Sun condition number and the non-homogeneous condition
numbers. Note that in Theorem 3.5 an eigenvalue condition number of the reversal of
a matrix polynomial is used, more precisely, κa((1/λ0), revP ). For λ0 =∞, this turns
into κa(0, revP ) which can be interpreted as a non-homogeneous absolute condition
number of λ0 =∞.

Theorem 3.5. Let (α0, β0) 6= (0, 0) be a simple eigenvalue of a regular matrix

polynomial P (α, β) =
∑k
i=0 α

iβk−iBi of grade k and let λ0 := α0

β0
, where λ0 = ∞

if β0 = 0. Assume that the same weights ωi are considered in the definition of all
the condition numbers appearing below, i.e., ‖∆Bi‖2 ≤ εωi, i = 0 : k, in all of them.
Then,

(i) if β0 6= 0,

κθ((α0, β0), P ) = κa(λ0, P )
1

1 + |λ0|2
; (3.1)

(ii) if α0 6= 0,

κθ((α0, β0), P ) = κa

(
1

λ0
, revP

)
1

1 +
∣∣∣ 1
λ0

∣∣∣2 ; (3.2)

(iii) if α0 6= 0 and β0 6= 0,

κθ((α0, β0), P ) = κr(λ0, P )
|λ0|

1 + |λ0|2
. (3.3)

Proof. Assume first that β0 6= 0, which implies that λ0 is finite. Let (α̃0, β̃0) :=
(α0+∆α0, β0+∆β0) be a perturbation of (α0, β0) small enough so that β0+∆β0 6= 0,
and let λ0 + ∆λ0 := α̃0

β̃0
. Note that

∆λ0 =
α̃0β0 − α0β̃0

β0β̃0
=
β0∆α0 − α0∆β0
β0(β0 + ∆β0)

. (3.4)

Then, we have, by Lemma 2.10,

χ((α0, β0), (α̃0, β̃0)) =
|α0∆β0 − β0∆α0|

|β0|
√

1 + |λ0|2|β0 + ∆β0|
√

1 + |λ0 + ∆λ0|2

=
|∆λ0|√

1 + |λ0|2
√

1 + |λ0 + ∆λ0|2
(3.5)

where the second equality follows from (3.4). Then, as ε→ 0 in the definition of the
condition numbers (which implies that |∆α0| and |∆β0| approach 0 as well, using a
continuity argument), we have ∆λ0 → 0. Thus, bearing in mind Definitions 2.1 and
2.12, (3.1) follows from (3.5).

Assume now that α0 6= 0 and β0 6= 0, that is, λ0 6= 0 and λ0 is not an infinite
eigenvalue. Then, from (3.5), we get

χ((α0, β0), (α̃0, β̃0)) =
|∆λ0|
|λ0|

|λ0|√
1 + |λ0|2

√
1 + |λ0 + ∆λ0|2

.
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This implies (3.3). By Lemma 2.4, (3.2) follows from (3.3) for finite, nonzero eigenval-
ues. It only remains to prove (3.2) for λ0 =∞, which corresponds to (α0, β0) = (1, 0).
This follows from Theorem 2.3 applied to revP and Theorem 2.13, which yield:

κa(0, revP ) =
ωk‖x‖2‖y‖2
|y∗Bk−1x|

= κθ((1, 0), P ).

From Theorem 3.5, we immediately get

κθ((α0, β0), P ) ≤ κr(λ0, P ) for 0 < |λ0| <∞,

as a consequence of (3.3). We also get

κθ((α0, β0), P ) ≤ κa(λ0, P ) for 0 ≤ |λ0| <∞,

as a consequence of (3.1). In addition, Theorem 3.5 guarantees that there exist
values of λ0 for which κθ((α0, β0), P ) and κr(λ0, P ) are very different and also values
for which they are very similar. The same happens for κθ((α0, β0), P ) and κa(λ0, P ).
In the rest of this subsection we explore some of these scenarios.

Remark 3.6. As explained in Section 1, the main motivation behind the defini-
tion of the homogeneous eigenvalue condition numbers was to provide a unified way
to measure the sensitivity of all the eigenvalues (finite and infinite) of a matrix poly-
nomial to perturbations in its matrix coefficients, since the relative non-homogeneous
condition number, being, probably, the most important for practical purposes, is not
defined for zero and infinite eigenvalues. However, this non-homogeneous condition
number is defined for nonzero eigenvalues whose modulus is as close to 0 and infinity as
wished, and note that, according to (3.3), in these cases κθ((α0, β0), P )� κr(λ0, P ),
because |λ0|/(1+|λ0|2)� 1 if |λ0| is very large or very small. Thus, a natural question
is to provide an interpretation of κθ((α0, β0), P ) in terms of Wilkinson-like eigenvalue
condition numbers when |λ0| is very large or very small.

For this purpose, note that from Theorem 3.5, we obtain

κa(λ0, P )

2
≤ κθ((α0, β0), P ) ≤ κa(λ0, P ), if |λ0| ≤ 1, (3.6)

and

κa

(
1
λ0
, revP

)
2

≤ κθ ((α0, β0), P ) ≤ κa
(

1

λ0
, revP

)
, if |λ0| ≥ 1. (3.7)

From (3.6) and (3.7), we state that for “small non-homogeneous eigenvalues”,
κθ((α0, β0), P ) is essentially κa(λ0, P ), while for “large non-homogeneous eigenval-
ues”, κθ((α0, β0), P ) is essentially κa(1/λ0, revP ). Therefore, κθ((α0, β0), P ) measures
absolute variations of very small non-homogeneous eigenvalues and absolute variations
of the reciprocal of very large non-homogeneous eigenvalues, while in most applica-
tions the relative variations are the ones of interest. These comments reveal that,
although the homogeneous eigenvalue condition numbers solve the lack of definition
of the relative non-homogeneous condition number for 0 and infinite eigenvalues, and
provide a unified way to measure the sensitivity of all the eigenvalues of a matrix poly-
nomial, they achieve these objectives at the cost of becoming an absolute condition
number at eigenvalues close to 0 or infinity.

Remark 3.7. Taking into account (3.6) and (3.7), the fact that κa(λ0, P ) =
κr(λ0, P )|λ0|, Theorem 3.5, and Lemma 2.4, the following relations are obtained:
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(i) From (3.1), we get that, if |λ0| ≈ 1, then

κθ((α0, β0), P ) ≈ κa(λ0, P )

2
≈ κr(λ0, P )

2
.

(ii) From (3.6), we get, as |λ0| approaches 0,

κθ((α0, β0), P ) ≈ κa(λ0, P )� κr(λ0, P ).

(iii) From (3.7), Lemma 2.4, and the fact that κa(1/λ0, revP ) = κr(1/λ0, revP ) ·∣∣∣ 1
λ0

∣∣∣, we get, as |λ0| approaches ∞,

κθ((α0, β0), P ) ≈ κa
(

1

λ0
, revP

)
� κr

(
1

λ0
, revP

)
= κr(λ0, P )� κa(λ0, P ).

Next, we give an example that illustrates results (ii) and (iii) in Remark 3.7
for a quadratic matrix polynomial with very small and very large non-homogeneous
eigenvalues. This example will also be useful to illustrate some results in Subsection
4.3, where we study the non-computability of eigenvalues of matrix polynomials with
large and small moduli.

Example 3.8. Let us consider the quadratic matrix polynomial

P (λ) =

[
(λ− 105)(λ− 1010) 0

0 (λ− 10−5)(λ− 1015)

]
= λ2

[
1 0
0 1

]
+ λ

[
−105 − 1010 0

0 −10−5 − 1015

]
+

[
1015 0

0 1010

]
=: λ2B2 + λB1 +B0.

The eigenvalues of P (λ) are λ1 := 10−5, λ2 := 105, λ3 := 1010, and λ4 := 1015.
Right and left eigenvectors associated with these eigenvalues are, respectively,

xλ1
= yλ1

= [0, 1]T , xλ2
= yλ2

= [1, 0]T , xλ3
= yλ3

= [1, 0]T , xλ4
= yλ4

= [0, 1]T .

In the computation of the condition numbers in this example, we consider the weights
ωi = ‖Bi‖2, i = 0 : 2. We note that ‖B2‖2 = 1, ‖B1‖2 = 10−5 + 1015, and ‖B0‖2 =
1015. In the next table we give the order of the value of the three condition numbers
κθ((λ0, 1), P ), κa(λ0, P ), and κr(λ0, P ) for each eigenvalue.

Eigenvalues κθ κa κr
10−5 1 1 105

105 1 1010 105

1010 10−5 1015 105

1015 10−15 1015 1

The first row of this table illustrates Remark 3.7(ii), while the second, third,
and fourth rows illustrate Remark 3.7(iii). The fourth row is particularly interesting
because it corresponds to a very large non-homogeneous eigenvalue that is very well-
conditioned in a relative sense, since κr(1015, P ) ≈ 1 as a consequence of the fact
that κθ((1015, 1), P ) is very small. Further discussions on this type of situations are
presented in Subsection 4.3.

We end this section with a comment on the impact of the results in Theorem
3.5 on the comparison of the condition numbers of some λ0 ∈ C when seen as an
eigenvalue of a matrix polynomial P and as an eigenvalue of a linearization of P .
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We recall that the usual way to solve a polynomial eigenvalue problem P (λ)x = 0
is to construct a linearization of P (λ) and to solve the associated generalized eigen-
value problem. However, it is important to ensure that the condition numbers of the
eigenvalues of P are not significantly magnified by this procedure. More precisely,
given a linearization L(λ) of P (λ) and a simple, finite, nonzero eigenvalue λ0 of P (λ),
we would like that κ(λ0, L)/κ(λ0, P ) = O(1) [2, 7]. We note that, depending on which
definition of condition number is used, this quotient might, in principle, produce very
different results. However, Theorem 3.5 shows that, for the three types of condition
numbers considered in this subsection, the quotients will be the same. Namely,

κθ((λ0, 1), L)

κθ((λ0, 1), P )
=
κa(λ0, L)

κa(λ0, P )
=
κr(λ0, L)

κr(λ0, P )
.

4. A geometric interpretation of the relationship between homoge-
neous and non-homogeneous condition numbers. In Theorem 3.5, we pro-
vided an exact relationship between the Stewart-Sun homogeneous condition number
and the non-homogeneous condition numbers. This relationship involves the factors

1
1+|λ0|2 and 1

1+
∣∣∣ 1
λ0

∣∣∣2 , when the Stewart-Sun condition number is compared with the

absolute non-homogeneous condition number, and involves the factor |λ0|
1+|λ0|2 , when

the Stewart-Sun condition number is compared with the relative non-homogeneous
condition number. In this section we give a geometric interpretation of these factors,
which leads to a natural understanding of the situations discussed in Remark 3.7
where the homogeneous and non-homogeneous condition numbers can be very differ-
ent. The reader should bear in mind, once again, that in most applications of PEPs,
the quantities of interest are the non-homogeneous eigenvalues, which can be accu-
rately computed with the current algorithms only if the non-homogeneous condition
numbers are moderate.

4.1. Geometric interpretation in terms of the chordal distance. The fac-

tors 1
1+|λ0|2 , 1

1+
∣∣∣ 1
λ0

∣∣∣2 and |λ0|
1+|λ0|2 appearing in (3.1), (3.2) and (3.3), respectively, can

be interpreted in terms of the chordal distance as we show in the next theorem. We do
not include a proof of this result since it can be immediately obtained from the defini-
tion of chordal distance (Definition 2.9) and Remark 2.8. Note that χ((α0, β0), (1, 0))
can be seen as the chordal distance from “λ0 = α0

β0
to∞”, while χ((α0, β0), (0, 1)) can

be seen as the chordal distance from “λ0 = α0

β0
to 0”.

Proposition 4.1. Let (α0, β0) 6= (0, 0) and let λ0 := α0

β0
, where λ0 = ∞ if

β0 = 0. Let θ denote the angle between (α0, β0) and (1, 0). Then,
(i) If β0 6= 0, then

1

1 + |λ0|2
= χ((α0, β0), (1, 0))2 = sin2(θ).

(ii) If α0 6= 0, then

1

1 +
∣∣∣ 1
λ0

∣∣∣2 = χ((α0, β0), (0, 1))2 = cos2(θ).

(iii) If α0 6= 0 and β0 6= 0, then

|λ0|
1 + |λ0|2

= χ((α0, β0), (1, 0)) χ((α0, β0), (0, 1)) = sin(θ) cos(θ).
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Remark 4.2. We notice that the conditions 0 ≤ |λ0| ≤ 1 and |λ0| ≥ 1 used
in Remarks 3.6 and 3.7 are equivalent, respectively, to χ((α0, β0), (1, 0)) ≥ 1/

√
2 and

χ((α0, β0), (0, 1)) ≥ 1/
√

2, or, in other words, to sin(θ) ≥ 1/
√

2 and cos(θ) ≥ 1/
√

2.
Combining Proposition 4.1 (iii) with Theorem 3.5 (iii), we see that either when

the angle between the lines (α0, β0) and (1, 0) is very small or when the angle between
the lines (α0, β0) and (0, 1) is very small, κθ((α0, β0), P ) � κr(λ0, P ), i.e., even in
the case κθ((α0, β0), P ) is moderate and the line (α0, β0) changes very little under
perturbations, the quotient λ0 = α0/β0 can change a lot in a relative sense. This
is immediately understood geometrically in R2. The combination of the remaining
parts of Theorem 3.5 and Proposition 4.1 lead to analogous discussions. In the next
section, we make an analysis of these facts from another perspective.

4.2. Geometric interpretation in terms of the condition number of the
cotangent function. Let α0, β0 ∈ C with β0 6= 0, let λ0 := α0

β0
, and let θ :=

θ((α0, β0), (1, 0)), that is, let θ denote the angle between the lines (α0, β0) and (1, 0).
From Proposition 4.1,

cos θ =
|λ0|√

1 + |λ0|2
, sin θ =

1√
1 + |λ0|2

.

Thus,

|λ0| =
|α0|
|β0|

= cot θ and
1

|λ0|
= tan θ.

Note that this is also the standard definition of the cotangent and tangent func-
tions in the first quadrant of R2. The cotangent function is differentiable in (0, π/2).
Thus, the absolute condition number1 of this function is

κa,ct(θ) := | cot′(θ)| = |1 + cot2(θ)| = 1 + |λ0|2, (4.1)

which is huge when θ approaches zero. Moreover, the relative-absolute condition
number2 of the cotangent function is given by

κr,ct(θ) :=
| cot′(θ)|
| cot(θ)|

=
|1 + cot2(θ)|
| cot(θ)|

=
1 + |λ0|2

|λ0|
, (4.2)

which is huge when θ approaches either zero or π/2.
The tangent function is also differentiable in (0, π/2) and the absolute condition

number of this function is

κa,t(θ) := | tan′(θ)| = |1 + tan2(θ)| = 1 +

∣∣∣∣ 1

λ0

∣∣∣∣2 . (4.3)

From (3.1), (3.2), (3.3), (4.1), (4.2), and (4.3), we obtain the following result.
Theorem 4.3. Let (α0, β0) 6= (0, 0) be a simple eigenvalue of a regular matrix

polynomial P (α, β) =
∑k
i=0 α

iβk−iBi of grade k and let λ0 := α0

β0
, where λ0 = ∞ if

β0 = 0. Let θ := θ((α0, β0), (1, 0)). Assume that the same weights are considered in
the definitions of all the condition numbers appearing below. Then,

1When we refer to the absolute condition number of a function of θ, we mean that we are
measuring the changes both in the function and in θ in an absolute sense.

2When we mention the relative-absolute condition number of a function of θ, we consider that
we are measuring the change in the function in a relative sense and the one in θ in an absolute sense.
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(i) If β0 6= 0, then

κa(λ0, P ) = κθ((α0, β0), P ) κa,ct(θ). (4.4)

(ii) If α0 6= 0, then

κa

(
1

λ0
, revP

)
= κθ((α0, β0), P ) κa,t(θ).

(iii) If α0 6= 0 and β0 6= 0, then

κr(λ0, P ) = κθ((α0, β0), P ) κr,ct(θ). (4.5)

Since for lines (α0, β0) and (α̃0, β̃0) very close to each other, χ((α0, β0), (α̃0, β̃0)) ≈
θ((α0, β0), (α̃0, β̃0)) = |θ((α0, β0), (1, 0))−θ((α̃0, β̃0), (1, 0))|, equations (4.4) and (4.5)
express the non-homogeneous condition numbers of λ0 as a combination of two ef-
fects: the change of the homogeneous eigenvalue measured by θ((α0, β0), (α̃0, β̃0)) as a
consequence of perturbations in the coefficients of P (α, β) and the alteration that this
change produces in | cot(θ)|, which depends only on the properties of cot(θ) and not
on P (λ). In fact, with this idea in mind, Theorem 4.3 can also be obtained directly
from the definitions of the involved condition numbers.

We notice that the expressions in (4.4) and (4.5) can be interpreted as follows:
Given a matrix polynomial P (λ), we have already mentioned that the usual way to
solve the polynomial eigenvalue problem is to use a linearization L(λ) = λL1 − L0

of P (λ). A standard algorithm to solve the generalized eigenvalue problem associ-
ated with L(λ) is the QZ algorithm. This algorithm computes first the generalized
Schur decomposition of L1 and L0, that is, these matrix coefficients are factorized
in the form L1 = QSZ∗ and L0 = QTZ∗, where Q and Z are unitary matrices
and S and T are upper-triangular matrices. The pairs (Tii, Sii), where Sii and Tii
denote the main diagonal entries of S and T in position (i, i), respectively, are the
“homogeneous” eigenvalues of L(λ) (and, therefore, of P (λ)). In order to obtain the
non-homogeneous eigenvalues of P (λ), one more step is necessary, namely, to divide
Tii/Sii. The expressions in (4.4) and (4.5) say that, even if κθ((Tii, Sii), P ) is mod-
erate and the pair (Tii, Sii) is “accurately computed”, the quotient λi := Tii/Sii may
be “inaccurately computed” when Sii is very close to zero (that is, when |λi| is very
large) or when Tii is close to zero (that is, when |λi| is close to zero) since |λi| will have
a huge non-homogeneous condition number. More precisely, for the large eigenvalues,
both κa(λ0, P ) and κr(λ0, P ) will be much larger than κθ((α0, β0), P ), and for the
small eigenvalues, κr(λ0, P ) will be much larger than κθ((α0, β0), P ). This observa-
tion brings up the question of the computability of small and large non-homogeneous
eigenvalues.

4.3. Computability of small and large non-homogeneous eigenvalues of
matrix polynomials. By Remark 3.7, if |λ0| is very large, we have

κθ((λ0, 1), P )� κr(λ0, P )� κa(λ0, P ), (4.6)

and, if |λ0| is very close to 0, then

κθ((λ0, 1), P ) ≈ κa(λ0, P )� κr(λ0, P ). (4.7)

These relations suggest that the non-homogeneous eigenvalue condition numbers
κa(λ0, P ) and κr(λ0, P ) may often be very large when either |λ0| is very large or
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very close to 0. However, we know from the eigenvalue λ0 = 1015 in Example 3.8
that this is not always the case, since it is possible that a very large eigenvalue
λ0 has κr(λ0, P ) ≈ 1. In this section we provide sufficient conditions under which
κr(λ0, P ) � 1 or κa(λ0, P ) � 1 for very large or small eigenvalues, which show that
this happens in many situations. In these cases, the non-homogeneous eigenvalues
are very ill-conditioned and could be computed with such huge errors by the available
algorithms that it could be simply said that they are not computable.

In the rest of this section, we provide lower bounds on both κa(λ0, P ) and
κr(λ0, P ) that will allow us to determine sufficient conditions for λ0 to be ill-conditioned
under any of the two non-homogeneous condition numbers. We focus first on the be-
havior of the condition numbers of the eigenvalues of pencils (that is, matrix polyno-
mials of grade 1) with very small or very large modulus. This case is very important
since, as explained in Section 3, the most common approach to computing the eigen-
values of a matrix polynomial is to use a linearization. To keep in mind that we
are not working with general matrix polynomials in the first part of this section, we
will use the notation L(λ) instead of P (λ) to denote a pencil. Moreover, we will
focus on eigenvalue condition numbers with weights ωi corresponding to the relative
with-respect-to-the-norm-of-P and relative coefficient-wise perturbations since these
correspond to the backward errors of current algorithms for generalized eigenvalue
problems (recall Remark 2.2).

Let L(λ) := λB1 +B0 be a regular pencil and let λ0 be a finite, simple eigenvalue
of L(λ). Notice that, by Theorem 2.13,

κθ((λ0, 1), L) =
(ω0 + |λ0|ω1)‖y‖2‖x‖2
|y∗(B1 − λ0B0)x|

≥ (ω0 + |λ0|ω1)

‖B1‖2 + |λ0|‖B0‖2
. (4.8)

The following result, which is an immediate consequence of the previous inequal-
ity, provides lower bounds on the non-homogeneous condition numbers that will be
used in Remark 4.5 to identify sufficient conditions for the non-homogeneous eigen-
values of a pencil L(λ) with large or small modulus to not be computable, i.e., to be
very ill-conditioned.

Proposition 4.4. Let L(λ) = λB1 + B0 be a regular pencil and let λ0 be a
finite, simple eigenvalue of L(λ). Let ω1, ω0 be the weights used in the definition of
the non-homogeneous condition numbers of λ0. Let

ρ0 :=
‖B0‖2

max{‖B0‖2, ‖B1‖2}
, ρ1 :=

‖B1‖2
max{‖B0‖2, ‖B1‖2}

.

1. If ω0 = ω1 = max{‖B1‖2, ‖B0‖2}, then

κa(λ0, L) ≥ 1 + |λ0|2 and κr(λ0, L) ≥ 1

|λ0|
+ |λ0|,

where the lower bound for κr(λ0, L) holds only if λ0 6= 0.
2. If ωi = ‖Bi‖2 for i = 0, 1, then

κa(λ0, L) ≥ max

{
1

2
,
|λ0|
2

}
(ρ0 + |λ0|ρ1), and (4.9)

κr(λ0, L) ≥ max

{
1

2|λ0|
,

1

2

}
(ρ0 + |λ0|ρ1),

where the lower bound for κr(λ0, L) holds only if λ0 6= 0.
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Proof. First assume that ω1 = ω0 = max{‖B0‖2, ‖B1‖2}. From (4.8), we get

κθ((λ0, 1), L) ≥ 1,

which implies the result by Theorem 3.5. Assume now that ωi = ‖Bi‖2 for i = 0, 1.
Then,

κθ((λ0, 1), L) ≥ ρ0 + ρ1|λ0|
1 + |λ0|

.

By Theorem 3.5, we have

κa(λ0, L) ≥
(

1 + |λ0|2

1 + |λ0|

)
(ρ0 + |λ0|ρ1),

and the result follows for κa(λ0, L) by noticing that

1 + |λ0|2

1 + |λ0|
≥
{

1/2, if |λ0| ≤ 1
|λ0|/2, if |λ0| > 1.

The result for κr(λ0, L) follows from (4.9) taking into account that |λ0|κr(λ0, L) =
κa(λ0, L).

Remark 4.5. From Proposition 4.4, we obtain the following sufficient conditions
for the non-computability of simple eigenvalues with small and large moduli.

When relative perturbations with respect to the norm of L(λ) are considered,
1. κa(λ0, L)� 1 if |λ0| � 1,
2. κr(λ0, L)� 1 if |λ0| � 1 or |λ0| � 1.

Now we consider relative coefficient-wise perturbations. Note that ρ0, ρ1 ≤ 1 and
ρ0 + ρ1 ≥ 1. Thus,

• if |λ0| ≤ 1,

κa(λ0, L) ≥ ρ0 + ρ1|λ0|
2

and κr(λ0, L) ≥ ρ0
2|λ0|

+
ρ1
2
.

• if |λ0| > 1,

κa(λ0, L) ≥ |λ0|
2

(ρ0 + ρ1|λ0|) ≥
|λ0|
2

and κr(λ0, L) ≥ ρ0 + ρ1|λ0|
2

.

Therefore,
1. κa(λ0, L)� 1 if |λ0| � 1.
2. κr(λ0, L)� 1 if any of the following conditions hold:

(a) ‖B0‖2 ≈ ‖B1‖2, and |λ0| � 1 or |λ0| � 1;
(b) ‖B0‖2 � ‖B1‖2 and |λ0| � 1;
(c) ‖B0‖2 � ‖B1‖2, |λ0| � 1 and ‖B1‖2|λ0| � ‖B0‖2;
(d) ‖B1‖2 � ‖B0‖2, |λ0| � 1, and ‖B0‖2 � ‖B1‖2|λ0|;
(e) ‖B1‖2 � ‖B0‖2 and |λ0| � 1.

Notice that conditions (b) and (c) (resp., (d) an (e)) are still sufficient con-
ditions for κr(λ0, L) � 1 with the less restrictive inequality ‖B0‖2 ≥ ‖B1‖2
(resp., ‖B1‖2 ≥ ‖B0‖2). However, we have chosen the more strict inequali-
ties so that cases (a)-(e) are “disjoint” in the sense that each of them con-
siders different scenarios. For example, if ‖B0‖2 & ‖B1‖2, the condition
‖B0‖2 ≥ ‖B1‖2 and |λ0| � 1 (less restrictive version of (b)) is already in-
cluded in (a).
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We admit a certain degree of ambiguity in the meaning of the expression “‖B1‖2 ≈
‖B0‖2” used above. It is possible to make a quantitative assumption of the type
1
C ≤

‖B1‖2
‖B0‖2 ≤ C for some constant C > 1, which would lead to lower bounds for

κr(λ0, L) depending on C. We have preferred the simpler but somewhat ambiguous
statement given above.

We also note that, for a generic matrix pencil, we can expect ‖B0‖2 ≈ ‖B1‖2,
which implies that, for these pencils, both the eigenvalues with very large and very
small moduli, are not computable when relative coefficient-wise perturbations are
considered, since κr(λ0, L)� 1 according to the condition (a) above.

In Remark 4.5 we have given sufficient conditions for eigenvalues of pencils with
very small or very large moduli to be ill-conditioned. However, these conditions are
not necessary. For brevity, this is illustrated in Examples 4.6 and 4.7 by providing
counterexamples only for two of these conditions. The interested reader is invited to
find counterexamples for the remaining ones.

Example 4.6. We have shown in Remark 4.5 that κa(λ0, L) � 1 if |λ0| � 1
for the relative coefficient-wise weights ωi = ‖Bi‖2 for i = 0, 1. Here we present
an example of a pencil with a small eigenvalue whose “absolute” non-homogeneous
condition number is also large.

Let L(λ) = λ

[
1014 0

0 1

]
−
[

1 0
0 10−7

]
. Note that λ0 = 10−7 is a simple

eigenvalue of L(λ) and [0, 1]T is both a left and a right eigenvector of L(λ) associated
with λ0. Moreover, from the first equality in (4.8) with ω0 = ‖B0‖2 = 1 and ω1 =
‖B1‖2 = 1014, we get

κθ((λ0, 1), L) =
1 + 107

1 + 10−14
≈ 107,

which implies that κa(λ0, L) = (1 + |λ0|2)κθ((λ0, 1), L) ≈ 107.

Example 4.7. We have shown in the condition (d) of Remark 4.5 that for the
weights ωi = ‖Bi‖2 for i = 0, 1, if a pencil L(λ) = λB1 + B0 has a simple eigenvalue
λ0 whose modulus is very close to 0 and the coefficients of L(λ) satisfy the conditions
‖B1‖2 ≥ ‖B0‖2 and ‖B0‖2 � ‖B1‖2|λ0|, then κr(λ0, L) � 1. Note that in Example
4.6, the pencil L(λ) has a very small eigenvalue (namely, 10−7), ‖B1‖2 ≥ ‖B0‖2,
‖B0‖2 < ‖B1‖2|λ0|, and κr(λ0, L) ≈ 1014.

Our next goal is to extend the results about non-computability of eigenvalues
from pencils to general matrix polynomials of arbitrary grade. These results and its
consequences are presented, respectively, in Theorem 4.8 and Remark 4.9. It is worth
mentioning that the bounds in Theorem 4.8 obtained for pencils (polynomials of grade
1) are not the ones in Proposition 4.4 since the manipulations used to prove Theorem
4.8 are different than those used in Proposition 4.4. In fact, both types of bounds
complement each other at some extent.

The proof of Theorem 4.8 has two steps, as the one of Proposition 4.4. First,
we start by providing a lower bound for κθ((λ0, 1), P ) for a general matrix polyno-
mial P (λ) and, then, we use Theorem 3.5 to obtain lower bounds for κa(λ0, P ) and
κr(λ0, P ). The first step requires simplifying the expression in the denominator of
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the formula (2.2) for κθ((λ0, 1), P ). Let P (α, β) =
∑k
i=0 α

iβk−iBi. Notice that

DαP (α, β) =

k∑
i=1

iαi−1βk−iBi, and (4.10)

DβP (α, β) =

k−1∑
i=0

(k − i)αiβk−i−1Bi =

k∑
i=0

(k − i)αiβk−i−1Bi. (4.11)

Let (λ0, 1) be a simple eigenvalue of P (α, β). Evaluating (4.10) and (4.11) at the
representative [λ0, 1]T , we get

DαP (λ0, 1)− λ0DβP (λ0, 1) =

k∑
i=1

iλi−10 Bi − λ0
k∑
i=0

(k − i)λi0Bi

= (1 + |λ0|2)

k∑
i=1

iλi−10 Bi − λ0k
k∑
i=0

λi0Bi

= (1 + |λ0|2)

k∑
i=1

iλi−10 Bi − λ0kP (λ0, 1).

Let x and y be, respectively, a right and a left eigenvector of P (α, β) associated
with (λ0, 1). Then, taking into account that P (λ0, 1)x = 0, the denominator of
κθ((λ0, 1), P ) in (2.2) is given by

|y∗(DαP (λ0, 1)− λ0DβP (λ0, 1))x| = (1 + |λ0|2)

∣∣∣∣∣y∗
(

k∑
i=1

iλi−10 Bi

)
x

∣∣∣∣∣ . (4.12)

Hence,

κθ((λ0, 1), P ) =
(
∑k
i=0 |λ0|iωi)‖x‖2‖y‖2

(1 + |λ0|2)|y∗(
∑k
i=1 iλ

i−1
0 Bi)x|

≥
(
∑k
i=0 |λ0|iωi)

(1 + |λ0|2)(
∑k
i=1 i|λ0|i−1‖Bi‖2)

.

(4.13)

If ωj = maxi=0:k{‖Bi‖2} for j = 0, 1, 2, . . . , k, from (4.13), we get

κθ((λ0, 1), P ) ≥
∑k
i=0 |λ0|i

(1 + |λ0|2)(
∑k
i=1 i|λ0|i−1)

maxi=0:k{‖Bi‖2}
maxi=1:k{‖Bi‖2}

. (4.14)

If ωj = ‖Bj‖2 for j = 0, 1, 2, . . . , k, then, from (4.13), we get

κθ((λ0, 1), P ) ≥
∑k
i=0 |λ0|i‖Bi‖2

(1 + |λ0|2)(
∑k
i=1 i|λ0|i−1‖Bi‖2)

. (4.15)

In the results that we present next we will use the following notation:

h :=
‖B0‖2

maxi=1:k{‖Bi‖2}
, µ :=

maxi=0:k{‖Bi‖2}
maxi=1:k{‖Bi‖2}

= max{1, h}.

With the previous inequalities and definitions at hand, we are now in the position
of providing in Theorem 4.8 the announced lower bounds for κa(λ0, P ) and κr(λ0, P )
when P is a matrix polynomial with arbitrary grade.

Theorem 4.8. Let P (λ) =
∑k
i=0 λ

iBi be a regular matrix polynomial and let λ0
be a finite, simple eigenvalue of P (λ).



A comparison of eigenvalue condition numbers for matrix polynomials 21

1. If ωj = maxi=0:k{‖Bi‖2} for j = 0, 1, 2, . . . , k, then

κa(λ0, P ) ≥ max

{
1

k2
,
|λ0|
k

}
µ, κr(λ0, P ) ≥ max

{
1

k2|λ0|
,

1

k

}
µ,

where the lower bound for κr(λ0, P ) holds only if λ0 6= 0.
2. If ωj = ‖Bj‖2 for j = 0, 1, 2, . . . , k, then

κa(λ0, P ) ≥ h

k2 max{1, |λ0|k−1}
+
|λ0|
k
, κr(λ0, P ) ≥ h

k2 max{|λ0|, |λ0|k}
+

1

k
,

where the lower bound for κr(λ0, P ) holds only if λ0 6= 0.
Proof. Let us start with the relative with-respect-to-the-norm-of-the-polynomial

case, that is, let ωj = maxi=0:k{‖Bi‖2} for j = 0, 1, . . . , k. Then, by Theorem 3.5 and
(4.14),

κa(λ0, P ) ≥
∑k
i=0 |λ0|i∑k

i=1 i|λ0|i−1
µ ≥

1 + |λ0|
∑k
i=1 |λ0|i−1

k
∑k
i=1 |λ0|i−1

µ =

(
1

k
∑k
i=1 |λ0|i−1

+
|λ0|
k

)
µ.

Taking into account that, if |λ0| ≤ 1, then
∑k
i=1 |λ0|i−1 ≤ k, and if |λ0| > 1, then∑k

i=1 |λ0|i−1 ≤ k|λ0|k−1, we get

κa(λ0, P ) ≥
(

1

k2 max{1, |λ0|k−1}
+
|λ0|
k

)
µ.

The results for the relative with-respect-to-the-norm-of-the-polynomial case follow
easily from this expression and κr(λ0, P ) = κa(λ0, P )/|λ0|.

Let us consider now the relative coefficient-wise case, that is, let ωj = ‖Bj‖2, for
j = 0, 1, . . . , k. Then, by Theorem 3.5 and (4.15),

κa(λ0, P ) ≥
∑k
i=0 |λ0|i‖Bi‖2

(
∑k
i=1 i|λ0|i−1‖Bi‖2)

≥
‖B0‖2 + |λ0|

∑k
i=1 |λ0|i−1‖Bi‖2

k
∑k
i=1 |λ0|i−1‖Bi‖2

≥ ‖B0‖2
kmaxi=1:k{‖Bi‖2}

∑k
i=1 |λ0|i−1

+
|λ0|
k
.

The results follow from
∑k
i=1 |λ0|i−1 ≤ kmax{1, |λ0|k−1} and κr(λ0, P ) = κa(λ0, P )/|λ0|.

Remark 4.9. The lower bounds on κa(λ0, P ) and κr(λ0, P ) presented in Theo-
rem 4.8 allow to determine, in a straightforward way, the following sufficient conditions
for the non-computability of the eigenvalue λ0, when either |λ0| � 1 or |λ0| � 1. In
order to obtain these conditions, note that, if µ > 1, then µ = h.
• For the weights ωj = maxi=0:k{‖Bi‖2}, j = 0, 1, . . . , k:
(a) κa(λ0, P )� 1 if |λ0| � k or if ‖B0‖2 � k2 maxi=1:k{‖Bi‖2}.
(b) κr(λ0, P )� 1 if |λ0| � 1

k2 or if ‖B0‖2 � kmaxi=1:k{‖Bi‖2}.
• For the weights ωj = ‖Bj‖2 for j = 0, 1, . . . , k:
(c) κa(λ0, P )� 1 if |λ0| � k or if ‖B0‖2 � k2 maxi=1:k{‖Bi‖2}max{1, |λ0|k−1}.
(d) κr(λ0, P )� 1 if ‖B0‖2 � k2 maxi=1:k{‖Bi‖2}max{|λ0|, |λ0|k}.

Next, we give an example to illustrate some of the results in Theorem 4.8 and
Remark 4.9.
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Example 4.10. Let us consider the quadratic matrix polynomial given in Exam-

ple 3.8, whose eigenvalues are 10−5, 105, 1010, and 1015. Note that h = 1015

10−5+1015 ≈ 1.
The sufficient conditions in Remark 4.9 imply, when ωi = ‖Bi‖2 for i = 0, 1, 2, that

κa(105, P ), κa(1010, P ), κa(1015, P )� 1,

and

κr(10−5, P )� 1.

Notice that the result for λ0 = 10−5 follows from the fact that the condition ‖B0‖2 �
k2 maxi=1:k{‖Bi‖2}max{|λ0|, |λ0|k}, which is equivalent to 1015 � 4 |10−5+1015| 10−5,
is true. These conclusions can be confirmed by the values of the condition numbers
in the table in Example 3.8. We stress that the conditions in Remark 4.9 are not
necessary. For brevity, we illustrate this observation with some of the results ob-
tained in Example 3.8. Note that κr(105, P ) and κr(1010, P ) are both large but
‖B0‖2 < k2 maxi=1:k{‖Bi‖2}max{|λ0|, |λ0|k} in both cases.

We highlight that whenever κθ((λ0, 1), P ) is moderate (of order one) and |λ0|
is large, then κa(λ0, P ) and κr(λ0, P ) are both always large, as exemplified by the
eigenvalue 105 of this example and guaranteed by Theorem 3.5 and its consequence
(4.6). However, we also highlight that it is possible to have κr(λ0, P ) ≈ 1 for very
large |λ0|, as exemplified by the eigenvalue 1015 in this example, since it is possible
to have κθ((λ0, 1), P )� 1 in these situations (recall again the table in Example 3.8).
In the jargon we are using in this section, this means that there exist very large non-
homogenous eigenvalues which are computable and that this happens if and only if the
corresponding homogeneous condition number is very close to zero as a consequence
of (3.3).

Finally, we present Corollary 4.11, which is an informal result that summarizes
in a concise way all the sufficient conditions obtained in this section for the non
computability of eigenvalues of pencils with small or large moduli. This corollary is,
in fact, obtained from the results in Remarks 4.5 and 4.9, when particularized for
k = 1. It is worth highlighting that the sufficient conditions that, in Corollary 4.11,
guarantee that κr(λ0, L) � 1 for the weights ωi = ‖Bi‖2, i = 0, 1, show that the
ratio of the magnitudes of the monomials |λ0|‖B1‖2 and ‖B0‖2 plays a relevant role
in determining when the relative non-homogenous condition numbers of very large
and small eigenvalues of pencils are very large.

Corollary 4.11. Let L(λ) = λB1+B0 be a regular pencil and let λ0 be a simple,
finite eigenvalue of L(λ).

1. If ωi = max{‖B0‖2, ‖B1‖2} for i = 0, 1, or ωi = ‖Bi‖2 for i = 0, 1, then

κa(λ0, L)� 1, if |λ0| � 1, or |λ0| � 1 and ‖B0‖2 � ‖B1‖2.

2. If ωi = max{‖B0‖2, ‖B1‖2} for i = 0, 1 and λ0 6= 0, then

κr(λ0, L)� 1, if |λ0| � 1 or |λ0| � 1.

3. If ωi = ‖Bi‖2 for i = 0, 1 and λ0 6= 0, then

κr(λ0, L)� 1, if any of the following two conditions hold

(i) |λ0| � 1 and either |λ0|‖B1‖2 � ‖B0‖2 or |λ0|‖B1‖2 � ‖B0‖2;
(ii) |λ0| � 1 and |λ0|‖B1‖2 � ‖B0‖2.
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Proof. We omit the proofs of 1. and 2. since they are elementary and focus on the
proof of 3. We notice that, in order to prove 3., it is enough to show that conditions
(i) and (ii) in 3. are equivalent to conditions (a)-(e) in Remark 4.5 and condition (d)
in Remark 4.9. Note that, since in this corollary we only consider eigenvalues with
very large or very small moduli, we can express (d) in Remark 4.9 as

(d1) |λ0| � 1 and ‖B0‖2 � ‖B1‖2|λ0|;
(d2) |λ0| � 1 and ‖B0‖2 � ‖B1‖2|λ0|.

We also introduce a separate notation for each condition in (i) in 3.:

(i)-1 |λ0| � 1 and |λ0|‖B1‖2 � ‖B0‖2;
(i)-2 |λ0| � 1 and |λ0|‖B1‖2 � ‖B0‖2.

It is clear that (ii) in 3. is equivalent to (d2) and (i)-2 is equivalent to (d1). Next
we show that conditions (i) and (ii) are also equivalent to conditions (a)-(e) in Remark
4.5. We consider three scenarios:

Case I: Assume that ‖B0‖2 ≈ ‖B1‖2. Then, condition (i)-1 is equivalent to
|λ0| � 1 and condition (ii) in 3. is equivalent to |λ0| � 1. These two conditions
together are equivalent to condition (a) in Remark 4.5.

Case II: Assume that ‖B0‖2 � ‖B1‖2. Then, (i)-1 is equivalent to |λ0| � 1 and
|λ0|‖B1‖2 � ‖B0‖2, which is equivalent to case (c) in Remark 4.5. Condition (ii) in
3. is equivalent to |λ0| � 1, which is equivalent to case (b) in Remark 4.5.

Case III: Assume that ‖B1‖2 � ‖B0‖2. Then, condition (i)-1 is equivalent to
|λ0| � 1, which is equivalent to case (e) in Remark 4.5. Condition (ii) in 3. is
equivalent to |λ0| � 1 and |λ0|‖B1‖2 � ‖B0‖2, which is equivalent to (d) in Remark
4.5.

5. Conclusions and future work. We have gathered together the definitions
of (non-homogeneous and homogeneous) eigenvalue condition numbers of matrix poly-
nomials that were scattered in the literature. We have also derived for the first time
an exact formula to compute one of these condition numbers (the homogeneous condi-
tion number that is based on the chordal distance, also called Stewart-Sun condition
number). On the one hand, we have determined that the two homogeneous condi-
tion numbers studied in this paper differ at most by a factor

√
k + 1, where k is the

grade of the polynomial, and so are essentially equal in practice. Since the definition
of the homogeneous condition number based on the chordal distance is considerably
simpler, we believe that its use should be preferred among the homogeneous condition
numbers. On the other hand, we have proven exact relationships between each of the
non-homogeneous condition numbers and the homogeneous condition number based
on the chordal distance. This result will allow to extend results that have been proven
for the non-homogeneous condition numbers to the homogeneous condition numbers
(and vice versa). Besides, we have provided geometric interpretations of the factor
that appears in these exact relationships, which explain transparently when and why
the non-homogeneous condition numbers are much larger than the homogeneous ones.
Finally, we have used these relationships to analyze cases for which very large and
very small non-homogeneous eigenvalues of matrix polynomials are computable with
some accuracy, i.e., are not very ill-conditioned, and we have seen that this is only
possible in some rather particular situations.

Some possible future research work related to the results in this manuscript are
discussed in this paragraph. Since we have only considered normwise eigenvalue con-
dition numbers, a natural and interesting problem is to extend the results in this paper
to entrywise eigenvalue condition numbers. Note, also, that we have only studied con-
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dition numbers of simple eigenvalues. Therefore, a comparison of condition numbers
of multiple eigenvalues of matrix polynomials similar to the one that we have pre-
sented for simple eigenvalues is another natural question that can be analyzed in the
future. Observe that this extension would require first to introduce definitions of con-
dition numbers for multiple eigenvalues of homogeneous matrix polynomials, because
the definitions currently available in the literature are only valid for non-homogeneous
polynomial eigenvalue problems [8, 9].
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