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1. Introduction

In the present paper we are concerned with eigenvectors and minimal bases of lineariza-
tions of square matrix polynomials over the complex fieldC. A squaren × n matrix
polynomial overC

P (λ) =

k∑

i=0

λiAi , A0, . . . , Ak ∈ C
n×n, Ak 6= 0 , (1)

is said to beregular if the determinant ofP (λ) is not the identically zero polynomial.
The matrix polynomialP (λ) is singularotherwise. Thefinite eigenvaluesand associated
eigenvectorsof a regular matrix polynomial (1) are defined as those valuesλ0 ∈ C and
nonzero vectorsv ∈ Cn, respectively, such thatP (λ0)v = 0. They are of relevance in sev-
eral applied problems where matrix polynomials arise (see,for instance, [23] for a survey
on quadratic polynomials, and [20, 21, 25] for recent examples of applications of higher
degree polynomials). The problem of the computation of eigenvalues and eigenvectors
of regular matrix polynomials, which is known as the Polynomial Eigenvalue Problem
(PEP), has attracted the attention of many researchers in numerical linear algebra. When
the matrix polynomial is singular, instead of the eigenvectors we are interested inminimal
bases, which are particular bases of the right and left nullspacesof P (λ) and are also
relevant in applications [2, 11].
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The standard way to numerically solve the PEP for regular polynomials is through the
use oflinearizations. These are essentially matrix pencilsH(λ) = λX + Y , with X,Y ∈
Cnk×nk, sharing certain information with the polynomialP (λ), in particular, theinvariant
polynomials, which include the eigenvalues and its associatedpartial multiplicities (see
[13] for the definition of these notions). However, the eigenvectors ofH(λ) andP (λ) are
not the same, and actually they can never be the same because the sizes ofH(λ) andP (λ)
are different. Similarly, for singular matrix polynomials, minimal bases are not usually
preserved by linearization. Then, the problem of relating the eigenvectors and minimal
bases ofP (λ) with the ones ofH(λ) becomes essential in numerical computations.

An important issue to determine the errors in the numerical computation of eigenvalues
is theeigenvalue condition number. The standard formula for the condition number of
eigenvalues of a matrix polynomialP (λ) involves the associated left and right eigenvec-
tors ofP (λ) [22]. When using linearizations to compute eigenvalues ofP (λ), we have
to consider the eigenvalue condition numbers corresponding to the linearizationH(λ),
which are, in general, larger than the ones of the polynomialP (λ). Actually, these con-
dition numbers involve the eigenvectors ofH(λ), instead of the eigenvectors ofP (λ).
Hence, in order to compare the condition numbers of the eigenvalues corresponding to
H(λ) with the condition numbers corresponding toP (λ), the knowledge of the left and
right eigenvectors ofH(λ) is relevant. Moreover, it would be desirable to know the rela-
tionship between these eigenvectors and the eigenvectors of P (λ).

The classical linearizations of matrix polynomials used inpractice have been thefirst
andsecond (Frobenius) companion forms[13]. However, during the last decade several
new families of linearizations have been introduced by different authors [1, 3, 9, 19, 24],
some of them extending other known families, like the one introduced back in the 1960’s
in [17]. The natural subsequent step is to analyze the advantages or disadvantages of these
new families and, in particular, to study their numerical features. In connection with the
problems mentioned in the previous paragraphs, a natural first step for this would be:

(P1) Find recovery formulas for eigenvectors and minimal bases ofP (λ) from the ones of
the linearizations.

(P2) Obtain explicit formulas for the eigenvectors and minimal bases of the linearizations in
terms of the eigenvectors and minimal bases ofP (λ).

We want to stress that solving (P2) implies solving (P1), butthe converse is not true.
For the families of linearizations introduced in [19], Problem (P1) has been solved

in [7, 15, 19], but (P2) has been only partially solved. For the family of Fiedler pencils,
introduced in [3] (and named later in [8]), both (P1) and (P2)have been completely solved
in [8] for square matrix polynomials and in [10] for rectangular polynomials. For the
family of generalized Fiedler pencils, also introduced in [3] (though named in [5]) (P1)
has been solved in [5], but (P2) remains open. The present paper deals with problem
(P2). Our main goal is to obtain formulas for the eigenvectors and minimal bases of the
generalized Fiedler pencils and theFiedler pencils with repetition, which is the family
recently introduced in [24]. These formulas will be given interms of the eigenvectors and
minimal bases of the matrix polynomial. We will also providea simpler expression of the
formula obtained in [8] for the eigenvectors of Fiedler pencils.

The paper is organized as follows. In Section 2 we introduce basic notation and def-
initions, and we recall the families of linearizations thatwe have mentioned above. In
Subection 2.4 we recall the notion of eigenvectors and minimal bases of matrix polyno-
mials. In Section 3 we present the main results of the paper, namely, formulas for the
left and right eigenvectors and minimal bases of the families of Fiedler pencils, proper
generalized Fiedler pencils and Fiedler pencils with repetition. We have also included a
subsection where we illustrate how these formulas could be useful in the comparison of
condition numbers of eigenvalues of linearizations. Section 4 is devoted to the proofs of
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the mains results, and in Section 5 we summarize the main contributions of the paper and
we pose some open problems that appear as a natural continuation of this work. The case
of non-proper generalized Fiedler pencils is addressed in Appendix A, because this is a
very particular case which deserves a separate treatment. Finally, in Appendix B we obtain
formulas for left and right eigenvectors associated with the infinite eigenvalue of regular
polynomials. This case is also addressed in a final appendix because the techniques em-
ployed in this case have nothing to do with the main techniques of the paper, and even the
formulas for this case are very specific.

2. Basic definitions

Along the paper we use the following notation:Im will denote them×m identity matrix.
When no subindex appear in this identity, we will assume it toben, which is the size of
the matrix polynomial in (1). We also deal with block-partitioned matrices with blocks of
sizen× n. For these matrices, we will use the following operation.

Definition 2.1: If A = [Aij ] is a blockr× s matrix consisting of block entriesAij with
sizen × n, then itsblock transposeis a block-partitioneds × r matrix AB whose(i, j)
block is(AB)ij = Aji.

Two matrix polynomialsP (λ) andQ(λ) are said to beequivalentif there are two matrix
polynomials with constant nonzero determinant,U(λ) andV (λ) (such matrix polynomi-
als are known asunimodular), such thatQ(λ) = U(λ)P (λ)V (λ). If U(λ) andV (λ) are
constant matrices, thenP (λ) andQ(λ) are said to bestrictly equivalent.

The reversalof the matrix polynomialP (λ) is the matrix polynomial obtained by re-
versing the order of the coefficient matrices, that is

revP (λ) :=
k∑

i=0

λiAk−i.

We use in this paper the classical notion of linearization for squaren × n polynomials
(see [13] and [12] for regular matrix polynomials and [7] forsingular ones).

Definition 2.2: A matrix pencilH(λ) = λX+Y with X,Y ∈ Cnk×nk is alinearization
of ann × n matrix polynomialP (λ) of degreek if there exist two unimodularnk × nk
matricesU(λ) andV (λ) such that

U(λ)H(λ)V (λ) =

[
I(k−1)n 0

0 P (λ)

]
, (2)

or, in other words, ifH(λ) is equivalent todiag (I(k−1)n, P (λ)). A linearizationH(λ) is
called astrong linearizationif revH(λ) is also a linearization ofrevP (λ).

In Section 2.3 we introduce the families of linearizations which are the subject of the
present paper. They are constructed using the followingnk×nk matrices, partitioned into
k× k blocks of sizen×n. Here and hereafter,Ai denotes theith coefficient of the matrix
polynomial (1).

M−k :=

[
Ak

I(k−1)n

]
, M0 :=

[
I(k−1)n

−A0

]
, (3)
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and

Mi :=




I(k−i−1)n

−Ai I
I 0

I(i−1)n


 , i = 1, . . . , k − 1 . (4)

TheMi matrices in (4) are always invertible, and the inverses are given by

M−1
i =




I(k−i−1)n

0 I
I Ai

I(i−1)n


 . (5)

However, note thatM0 andM−k are invertible if and only ifA0 andAk, respectively, are.
We will also use the notation

M−i := M−1
i , for i = 0, 1, ..., k − 1, and Mk := M−1

−k .

The notation forM−k differs from the standard one used in [3, 5, 8]. The reason forthis
change here is that, for all but one of the families of linearizations considered in this
paper (and this last one is addressed only in Appendix A),M−k will appear in the leading
term of the linearization, and we follow the convention of using negative indices for the
matrices in this term. We want to emphasize also thatM−0 := M−1

0 . For this reason, we
will use along this paper both0 and−0, with different meanings.

It is easy to check the commutativity relations

MiMj = MjMi for ||i| − |j|| 6= 1 . (6)

For0 ≤ i ≤ k we will make use along the paper of the polynomial

Pi(λ) = Ak−i + λAk−i+1 + · · ·+ λiAk.

This polynomial is known as theith Horner shift ofP (λ), with P (λ) as in (1). Notice that
P0(λ) = Ak, Pk(λ) = P (λ) andλPi(λ) = Pi+1(λ)−Ak−i−1, for 0 ≤ i ≤ k − 1.

2.1. Index tuples, column standard form, and the SIP property

In this paper we are concerned with pencils constructed fromproducts ofMi andM−i

matrices. In our analysis, the order in which these matricesappear is relevant. For this
reason, we will associate an index tuple with each of these products to simplify our de-
velopments. We also introduce some additional concepts defined in [24] which are related
to this notion. We use boldface letters, namelyt,q, z . . ., for ordered tuples of indices (or
index tuplesin the following).

Definition 2.3: Let t = (i1, i2, . . . , ir) be an index tuple containing indices from
{0, 1, . . . , k,−0,−1, . . . ,−k}. We say thatt is simpleif ij 6= il for all j, l ∈ {1, 2, . . . , r}
with j 6= l.

Definition 2.4: Let t = (i1, i2, . . . , ir) be an index tuple containing indices from
{0, 1, . . . , k,−0,−1, . . . ,−k}. Then,

Mt := Mi1Mi2 · · ·Mir . (7)
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We set alsoM∅ := Ink.

We want to insist on the fact that0 and−0 are different. We include−0 along this
section for completeness, though the only case where it is relevant is the one addressed in
Appendix A, where matrixM−0 appears.

Unless otherwise stated, the matricesMi, i = 0, . . . , k, andMt refer to the matrix
polynomialP (λ) in (1). When necessary, we will explicitly indicate the dependence on a
certain polynomialQ(λ) by writing Mi(Q) andMt(Q).

Definition 2.5: Let t1 and t2 be two index tuples containing indices from
{0, 1, . . . , k,−0,−1, . . . ,−k}. We say thatt1 is equivalentto t2, and we will write
t1 ∼ t2, if Mt1 = Mt2 .

Notice that this is an equivalence relation and that ifMt2 can be obtained fromMt1 by
the repeated application of the commutativity relations (6), thent1 is equivalent tot2.

We will refer to an index tuple consisting of consecutive integers as astring. We will
use the notation(q : l) for the string of integers fromq to l, that is

(q : l) :=

{
(q, q + 1, . . . , l), if q ≤ l

∅, if q > l
.

Definition 2.6: Given an index tuplet = (i1, . . . , ir), we define thereversetuple oft,
denoted byrev t, as rev t := (ir, . . . , i1).

Given an index tuplet = (i1, . . . , ir) and an integerh, we will use the following
notation:

−t := (−i1, . . . ,−ir), and h+ t := (h+ i1, . . . , h+ ir).

The following two notions are basic in our developments.

Definition 2.7: [24] Let t = (i1, i2, . . . , ir) be an index tuple. Thent is said to satisfy
theSuccessor Infix Property (SIP)if for every pair of indicesia, ib ∈ t with 1 ≤ a < b ≤
r, satisfyingia = ib, there exists at least one indexic = ia + 1 such thata < c < b.

Definition 2.8: [24] Let h be a nonnegative integer andt be an index tuple containing
indices from{0, 1, . . . , h}. Thent is said to be incolumn standard formif

t = (as : bs, as−1 : bs−1, . . . , a2 : b2, a1 : b1) ,

with 0 ≤ b1 < b2 < · · · < bs−1 < bs ≤ h and0 ≤ aj ≤ bj , for all j = 1, . . . , s. Let t′

be an index tuple containing indices from{−h,−h+ 1, . . . ,−1}. Thent′ is said to be in
column standard formif h+ t′ is in column standard form.

The connection between the column standard form and the SIP property of an index
tuple is shown in the following result and the subsequent definition.

Lemma 2.9: [24] Let t = (i1, . . . , ir) be an index tuple containing indices from
{0, 1, . . . , h} or from {−h,−h + 1, ...,−1}, for someh ≥ 1. Thent satisfies the SIP
if and only if t is equivalent to a (unique) tuple in column standard form.

Definition 2.10: Let t = (i1, . . . , ir) be an index tuple containing indices from
{0, 1, . . . , h} or from {−h,−h + 1, ...,−1}, for someh ≥ 1, and satisfying the SIP.
Thecolumn standard form oft is the unique tuple in column standard form equivalent to
t. We denote this tuple bycsf(t).

Note that, in particular, ift is simple, thent satisfies the SIP and, therefore, is equiv-
alent to a tuple in column standard form. In the more particular case of a permutation
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we can obtain an expression fort in column standard form that will be used in further
developments.

Lemma 2.11: Let t be a permutation of{h0, h0 + 1, . . . , h}, with 0 ≤ h0 ≤ h. Thent
is in column standard form if and only if

t = (tα−1 + 1 : h, tα−2 + 1 : tα−1, . . . , t2 + 1 : t3, t1 + 1 : t2, h0 : t1)

for some positive integersh0 ≤ t1 < t2 < · · · < tα−1 < h.
Denotet0 = h0−1 andtα = h. We call each sequence of consecutive integers(ti−1+1 :

ti), for i = 1, . . . , α, a string in t.

The proof of Lemma 2.11 is straightforward and is left to the reader. Notice that we have
an analogue to Lemma 2.11 for tuples of negative integers, because, ift′ is a permutation
of {−q0,−q0+1, . . . ,−q−2,−q}, where1 ≤ q ≤ q0, thent′ is in column standard form
if and only if q0 + t′ is in column standard form.

2.2. Consecutions and inversions of simple index tuples

Here we recall some definitions introduced in [8] which are key in the formulas for the
eigenvectors and minimal bases.

Definition 2.12: Let h ≥ 1 be an integer andq be a simple index tuple with all its
elements from{0, 1, . . . , h} or all from{−h,−h+ 1, . . . ,−1}.

(a) We say thatq has aconsecutionat j if both j, j + 1 ∈ q andj is to the left ofj + 1 in
q. We say thatq has aninversionat j if both j, j + 1 ∈ q andj is to the right ofj + 1
in q.

(b) We say thatq hascj (resp.ij) consecutions(resp. inversions) atj if q has consecutions
(resp. inversions) atj, j +1, . . . , j + cj − 1 (resp. atj, j +1, . . . , j + ij − 1) andq has
not a consecution (resp. inversion) atj + cj (resp.j + ij).

Example 2.13 Let q = (11 : 13, 10, 6 : 9, 5, 4, 0 : 3). This tuple has consecutions at
0, 1, 2, 6, 7, 8, 11 and12. Moreover,q has three consecutions at0, it has two consecutions
at1, and just one consecution at2.

2.3. Fiedler pencils, generalized Fiedler pencils, and Fiedler pencils with repetition

In this section we recall the families of Fiedler pencils, generalized Fiedler (GF) pencils,
and Fiedler pencils with repetition (FPR) of a given matrix polynomial, and some of their
properties. The Fiedler and GF families were introduced in [3] for regular matrix polyno-
mials (although the authors did not assign any specific name to these pencils). They were
also studied, and named, in [8] and [5], respectively, for square singular polynomials. The
Fiedler pencils have been addressed recently in [10] for rectangular matrix polynomials.
Finally, the FPR have been introduced in [24]. It is worth to mention also that the GF
pencils have been used in the construction of structured linearizations, like symmetric [3]
and palindromic [9]. Quite recently, also symmetric [4] andpalindromic [6] linearizations
have been found within the family of FPR.

In the following definitions we make use of the matrices introduced in Definition 2.4
associated with index tuples.

Definition 2.14: (Fiedler pencils) LetP (λ) be the matrix polynomial in (1) and letq be
a permutation of{0, 1, . . . , k − 1}. Then theFiedler pencilof P (λ) associated withq is

Fq(λ) = λM−k −Mq.
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Next we introduce GF pencils. In the following, ifE = {i1, . . . , ir} is a set of indices,
then−E denotes the set{−i1, . . . ,−ir}.

Definition 2.15: (GF and PGF pencils). LetP (λ) be the matrix polynomial in (1). Let
{C0, C1} be a partition of{0, 1, . . . , k} (C0 andC1 can be the empty set), andq , m be
permutations ofC0 and−C1, respectively. Then thegeneralized Fiedler (GF)pencil of
P (λ) associated with(m,q) is thenk × nk pencil

K(λ) := λMm −Mq.

If 0 ∈ C0 andk ∈ C1, then the pencilK(λ) is said to be aproper generalized Fiedler
(PGF) pencil ofP (λ).

If, in Definition 2.15 we admitC0 = ∅, thenMq = Ink and, ifC1 = ∅ thenMm = Ink.
It is obvious that any Fiedler pencilFq(λ) of P (λ) is a particular case of a GF pencil

with C0 = {0, 1, . . . , k − 1} andC1 = {k}. We stress that GF pencils that are not proper
are defined only ifAk and/orA0 are nonsingular.

The following result is proved in [5, Theorem 2.2]. We include it here for completeness.

Theorem 2.16: LetP (λ) be ann× n matrix polynomial. Then any GF pencil ofP (λ)
is a strong linearization forP (λ).

Theorem 2.16 is true for both regular and singular polynomials P (λ), but in this last
case we recall that the only GF pencils that are defined are thePGF pencils.

Now we recall the notion of FPR, recently introduced in [24].

Definition 2.17: (FPR). LetP (λ) be the matrix polynomial in (1), whereA0 andAk are
nonsingular matrices. Let0 ≤ h ≤ k−1, and letq andm be permutations of{0, 1, . . . , h}
and{−k,−k + 1, . . . ,−h− 1}, respectively. Assume thatlq andrq are index tuples with
elements from{0, 1, . . . , h−1} such that(lq,q, rq) satisfies the SIP. Similarly, letlm and
rm be index tuples with elements from{−k,−k + 1, . . . ,−h− 2} such that(lm,m, rm)
satisfies the SIP. Then, the pencil

L(λ) = λMlmMlqMmMrqMrm −MlmMlqMqMrqMrm

is aFiedler pencil with repetition (FPR)associated withP (λ).

Remark 1 : The constraintA0 andAk being nonsingular can be relaxed. We needA0 to
be nonsingular only if 0 is an index inlq, or rq, or both. Similarly withAk and the index
−k in lm andrm.

Notice that iflq, rq, lm, andrm are all the empty index tuple in Definition 2.17, then
L(λ) is a GF pencil (actually, a PGF pencil). Note also that not allGF pencils are FPR.

We have the analogue of Theorem 2.16 for FPR.

Theorem 2.18: [24] LetP (λ) be ann×n matrix polynomial. Then every FPR ofP (λ)
is a strong linearization ofP (λ).

The requirement that(lq,q, rq) and (lm,m, rm) satisfy the SIP in Definition 2.17 is
introduced in order to keep the product of theMi matrices definingL(λ) operation free
[24]. As a consequence, the coefficients ofL(λ) are block-partitioned matrices, whose
n × n blocks are of the form0,±I, or ±Ai (that is, no products ofAi blocks appear).
This requirement imposes some constraints on the indices oflq, rq, lm andrm that we
analyze next. In particular, we focus onrq andrm because they are the only relevant
tuples in the construction of the right eigenvectors and minimal bases (as we will see in
Section 4.3).
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Lemma 2.19: Leth be a nonnegative integer andq be a permutation of{0, 1, . . . , h}
in column standard form. Letrq = (s1, ..., sr) be such that(q, rq) satisfies the SIP,
wheresi is the ith index ofrq. Then, for eachi = 1, .., r, there exists a string(a : b)
in csf(q, s1, ..., si−1) such thata ≤ si < b.

Proof : Let 1 ≤ i ≤ r. Since(q, s1, ..., si−1) satisfies the SIP, by Lemma 2.9, it is equiv-
alent to a tuple in column standard form. On the other hand, wehave(q, s1, ...., si) ∼
(csf(q, s1, . . . , si−1), si). Now, notice thatcsf(q, s1, ..., si−1) contains all indices in
{0, 1, ..., h} and, in particular,si. The result follows from the fact that(q, rq) satisfies
theSIP . �

Lemma 2.19 motivates the following definition.

Definition 2.20: (Type 1 indices relative to a simple index tuple). Leth be a nonnegative
integer andq be a permutation of{0, 1, . . . , h}. Let s be an index in{0, 1, ..., h − 1}.
Thens is said to be aright index of type 1 relative toq if there is a string(td−1 + 1 : td)
in csf(q) such thats = td−1 + 1 < td.

We have the analogues of Lemma 2.19 and Definition 2.20 for tuples of negative in-
tegers. They follow directly from the fact that, ifq′ is a permutation of{−h,−h +
1, . . . ,−1}, thenq′ is in column standard form if and only ifh+q′ is in column standard
form.

The following definition allows us to associate a simple tuple to the tuple obtained by
adding a type1 index to a given permutation.

Definition 2.21: (Associated simple tuple) Leth be a nonnegative integer andq be a per-
mutation of{0, 1, . . . , h}. Let csf(q) = (bα+1,bα, . . . ,b1), wherebi = (ti−1 + 1 : ti),
i = 1, . . . , α + 1, are the strings ofcsf(q). We say that thesimple tuple associated
with q is csf(q) and denote it bys(q). If s is an index of type 1 with respect toq, say
s = td−1 + 1 < td, then thesimple tuple associated with(q, s) is the simple tuple:

• s(q, s) :=
(
bα+1,bα, . . . ,bd+1, b̃d, b̃d−1,bd−2, . . . ,b1

)
, where

b̃d = (td−1 + 2 : td) and b̃d−1 = (td−2 + 1 : td−1 + 1)

if s 6= 0.

• s(q, 0) :=
(
bα+1,bα, . . . , b̃1, b̃0

)
, where

b̃1 = (1 : t1) and b̃0 = (0).

Definition 2.21 can be extended to the case where we adjoin tuples containing more
than one index. This is done in Definition 2.22, which is key inTheorem 3.6.

Definition 2.22: (Index tuple of type 1) Leth be a nonnegative integer,q be a permuta-
tion of {0, 1, . . . , h}, andrq andlq be tuples with indices from{0, 1, ..., h − 1}, possibly
with repetitions. We say thatrq = (s1, ..., sr), wheresi is theith index ofrq, is anindex
tuple of type 1relative toq if, for i = 1, ..., r, si is a right index of type 1 with respect to
s(q, (s1, ..., si−1)), wheres(q, (s1, ..., si−1)) := s(s(q, (s1, ..., si−2)), si−1) for i > 2.
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2.4. Eigenvalues and eigenvectors, minimal indices and minimal bases.

The right and lefteigenspacesof ann× n regular matrix polynomialP (λ) atλ0 ∈ C are
the right and left null spaces ofP (λ0), i.e.,

Nr(P (λ0)) := {x ∈ C
n : P (λ0)x = 0} ,

Nℓ(P (λ0)) :=
{
y ∈ C

n : P (λ0)
T y = 0

}
.

If P (λ) is a regular matrix polynomial andNr(P (λ0)) (or, equivalently,Nℓ(P (λ0)))
is nontrivial, thenλ0 is said to be a (finite) eigenvalue, and a vectorx 6= 0 (respectively,
y 6= 0) in Nr(P (λ0)) (resp.Nℓ(P (λ0))) is aright (resp.left) eigenvector ofP associated
withλ0. Matrix polynomials may also have infinite eigenvalues. In this work we will focus
on finite eigenvalues. Infinite eigenvalues are considered only in Appendix B, because
the techniques used for this case are completely different (though simpler) than the ones
employed for finite eigenvalues.

In the case ofP (λ) being a square singularn×nmatrix polynomial, the previous notion
of eigenvalue (and eigenvector) makes no sense, because with this definition all complex
values would be eigenvalues ofP (λ). In this case we are interested in minimal bases of
P (λ) instead of eigenvectors. This notion is related to theright and left nullspacesof
P (λ), which are, respectively, the following subspaces ofC(λ)n,

Nr(P ) := {x(λ) ∈ C(λ)n : P (λ)x(λ) ≡ 0} ,

Nℓ(P ) :=
{
y(λ) ∈ C(λ)n : P (λ)T y(λ) ≡ 0

}
,

whereC(λ)n is the vector space of dimensionn with coordinates in the the fieldC(λ) of
rational functions inλ with complex coefficients. Apolynomial basisof a vector space
overC(λ) is a basis consisting of polynomial vectors (that is, vectors whose coordinates
are polynomials inλ). Theorder of a polynomial basis is the sum of the degrees of its
vectors. Here thedegreeof a polynomial vector is the maximum degree of its compo-
nents. Aright (respectively,left) minimal basis ofP (λ) is a polynomial basis ofNr(P )
(resp.Nℓ(P )) such that the order is minimal among all polynomial bases ofNr(P ) (resp.
Nℓ(P )) [11].

Eigenvectors and minimal bases are the central object of this paper, as we see in Section
3.

In the following, when referring to eigenvectors of matrix polynomials (or their lin-
earizations), we will assume that the polynomial is regular, and when referring to minimal
bases, we assume it to be singular.

3. Main results

By Theorems 2.16 and 2.18, all pencils within the families considered in Section 2.3 are
(strong) linearizations. Our goal is to derive formulas forthe left and right eigenvectors
and the left and right minimal bases of these linearizations. In particular, we want to relate
the left and right eigenvectors and the left and right minimal bases of these linearizations
with the ones of the polynomialP (λ). Lemma 5.3 in [8] shows how to do this for Fiedler
pencils. By using suitable strict equivalence relations between GF, FPR and appropriate
Fiedler pencils, we obtain formulas for GF pencils and FPR associated with type 1 tuples
as well. These formulas are given in Sections 3.1, 3.2 and 3.3. As we will see, the presence
of an identity block within these formulas allow us to reverse the process and recover the
eigenvectors and minimal bases ofP (λ) from the eigenvectors and minimal bases of the
linearizations, as it was done in [5] for the GF pencils, and in [8] for Fiedler pencils. The
proofs of all these formulas are addressed in Section 4.
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From now on, when considering an ordered tuplez with ℓ entries, we will follow
the convention of assigning the position0 to the first entry in the tuple. Also, for each
0 ≤ i ≤ ℓ, z(i) will denote the number occupying theith position inz and, for each
j ∈ z, z−1(j) denotes the position ofj in z (starting with0). In other words, we see an in-
dex tuplez with ℓ elements,j1, . . . , jℓ, as a bijectionz : {0, 1, . . . , ℓ−1} → {j1, . . . , jℓ}.
We will also associate tuples of blocks to tuples of numbers.Then, according to the pre-
vious convention, when referring to “the position of a block" we understand that we start
counting in0 (the0th position)

3.1. Eigenvectors and minimal bases of Fiedler pencils

The following theorem is a restatement of Lemma 5.3 in [8].

Theorem 3.1: Let P (λ) be ann × n matrix polynomial of degree k,Pi be its ith
Horner shift, fori = 0, . . . , k, andq be a permutation of{0, 1, . . . , k−1} with csf(q) =
(bα,bα−1, . . . ,b1), wherebj = (tj−1 + 1 : tj), for j = 1, . . . , α. LetFq(λ) = λM−k −
Mq be the Fiedler pencil ofP (λ) associated withq. Let

Rq(P, λ) :=
[
B0 B1 . . . Bk−1

]B
, (8)

where, ifq(i) ∈ bj , for somej = 1, . . . , α, then

Bi =

{
λj−1I , if i = k − tj − 1,
λj−1Pi , otherwise.

(9)

LetLq(P, λ) := Rrevq(P
T , λ). Then

(a) {v1(λ), . . . , vp(λ)} is a right minimal basis of P (λ) if and only if
{Rq(P, λ)v1(λ), . . . ,Rq(P, λ)vp(λ)} is a right minimal basis ofFq(λ).

(b) v is a right eigenvector ofFq(λ) associated with the eigenvalueλ0 if and only ifv =
Rq(P, λ0)x, wherex is a right eigenvector ofP (λ) associated withλ0.

(c) {w1(λ), . . . , wp(λ)} is a left minimal basis of P (λ) if and only if
{Lq(P, λ)w1(λ), . . . ,Lq(P, λ)wp(λ)} is a left minimal basis ofFq(λ).

(d) w is a left eigenvector ofFq(λ) associated with the eigenvalueλ0 if and only ifw =
Lq(P, λ0)y, wherey is a left eigenvector ofP (λ) associated withλ0.

Moreover, ifq hasc0 consecutions at 0, then the(k − c0)th block ofRq(P, λ) is equal to
In, and ifq hasi0 inversions at0, then the(k − i0)th block ofLq(P, λ) is equal toIn.

Remark 1 : We want to stress thatk− tj − 1 in (9) is the position incsf(q), (counting
from left to right and starting with0) of the smallest index inbj (that is,q−1(tj−1 +
1) = k − tj − 1). Thus, we may seeRq(P, λ) as partitioned intoα strings of blocks,
each one corresponding to a stringbj in csf(q). More precisely, the string inRq(P, λ)

associated withbj is of the formλj−1
[
I Pq−1(tj−1+2) . . . Pq−1(tj)

]B
. Hence,Rq(P, λ)

can be easily obtained fromcsf(q).

Remark 2 : There is a duality between the formulas forRq andLq given in Theorem
3.1. More precisely, if theith block,Bi, of Rq in (8), with i 6= 0, is of the formλj−1Pi,
then theith block,B′

i, of Lq is λk−(j+i)I and, similarly, if theith block ofLq is λj−1P T
i ,

with i 6= 0, then theith block of Rq is λk−(j+i)I. Notice, finally, thatB0 = λα−1I and
B′

0 = λβ−1I, with α+ β = k + 1.

Example 3.2 Let k = 13 andq = (10 : 12, 9, 8, 6 : 7, 5, 2 : 4, 0 : 1). Note thatq
contains seven strings. Each string induces a string of blocks in Rq corresponding to
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Fq(λ) = λM−k −Mq. The first entries of these strings correspond to the positions 0, 3,
4, 5, 7, 8 and 11, respectively. ThenRq is

Rz =
[
λ6I λ6P1 λ6P2 λ

5I λ4I λ3I λ3P6 λ
2I λI λP9 λP10 I P12

]B
.

For the left eigenvectors and minimal bases, we havecsf(revq) = (12, 11, 7 : 10, 4 :
6, 3, 1 : 2, 0), so

Lq =
[
λ6I λ5I λ4I λ4P T

3 λ4P T
4 λ4P T

5 λ3I λ3P T
7 λ3P T

8 λ2I λI λP T
11 I

]B
.

3.2. Eigenvectors and minimal bases of GF pencils

In this section we present an explicit relationship betweenleft and right eigenvectors and
minimal bases of GF pencils and left and right eigenvectors and minimal bases ofP (λ).
Here we only address the case of PGF pencils and we postpone toAppendix A the case
of non-proper GF pencils since these pencils do not seem to berelevant in applications
(except in the particular case of the symmetric linearizations of even-degree regular matrix
polynomials in [3]) and the study of eigenvectors and minimal bases in this case requires
techniques other than those used in the PGF case. It should beremarked that index tuples
q andm in Definition 2.15 are both permutations and, so, they are equivalent to tuples in
column standard form.

Theorem 3.3: LetP (λ) be ann× n matrix polynomial with degreek and letK(λ) =
λMm −Mq be a PGF pencil ofP (λ). LetPi, for i = 0, 1, . . . , k, be theith Horner shift
of P . Assume thatm hasc−k consecutions at−k, andcsf(m) = (m1,−k : −k + c−k).
Setz := csf(−revm1,q) = (bα,bα−1, . . . ,b1), and letRK(P, λ) be the following
nk × n matrix polynomial:

(i) If c−k = 0, thenRK(P, λ) := Rz(P, λ), withRz(P, λ) as in(8).
(ii) If c−k > 0, then

RK(P, λ) :=
[
λα[P0 P1 . . . Pc−k−1] Bc−k

Bc−k+1 . . . Bk−1

]B
, (10)

where, if z(i) ∈ bj, for somej = 1, 2, . . . , α, then the blockBi+c−k
is as in(9).

Finally, setLK(P, λ) := RK♯(P T , λ), whereK♯(λ) = λMrevm(P T ) − Mrev q(P
T ).

Then:

(a) {v1(λ), . . . , vp(λ)} is a right minimal basis of P (λ) if and only if
{RK(P, λ)v1(λ), . . . ,RK(P, λ)vp(λ)} is a right minimal basis ofK(λ).

(b) v is a right eigenvector ofK(λ) associated with the eigenvalueλ0 if and only ifv =
RK(P, λ0)x, wherex is a right eigenvector ofP (λ) associated withλ0.

(c) {w1(λ), . . . , wp(λ)} is a left minimal basis of P (λ) if and only if
{LK(P, λ)w1(λ), . . . ,LK(P, λ)wp(λ)} is a left minimal basis ofK(λ).

(d) w is a left eigenvector ofK(λ) associated with the eigenvalueλ0 if and only ifw =
LK(P, λ0)y, wherey is a left eigenvector ofP (λ) associated withλ0.

Moreover, ifq hasc0 consecutions at0, then the (k − c0)th block ofRK(P, λ) is equal to
In, and ifq hasi0 inversions at0, then the(k − i0)th block ofLK(P, λ) is equal toIn.

Remark 3 : Notice that theBi blocks in (10) follow the same rule as in (9). More
precisely, theith blockBi is of the formλj−1I if z(i− c−k) is the first element inbj, and
it is of the formλj−1Pi if z(i− c−k) ∈ bj but is not the first element ofbj.
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In the following, for simplicity and when there is no risk of confusion, we will drop the
dependence onP andλ in RK(P, λ) andLK(P, λ).

Example 3.4 Let k = 12, m = (−4 : −3,−6,−12 : −10) andq = (7 : 9, 5, 0 : 2).
Then,c−k = 2. Note thatz = csf(−revm1,q) = (6 : 9, 3 : 5, 0 : 2), soα = 3.
Also, csf(revm) = (−3,−4,−6,−10,−11,−12) = (m′

1,−12), and csf(revq) =
(9, 8, 7, 5, 2, 1, 0). Then,z′ = csf(−revm′

1, revq) = (11, 10, 9, 8, 6 : 7, 4 : 5, 3, 2, 1, 0),
soα = 10 in this case. IfK(λ) = λMm −Mq, Theorem 3.3 gives

RK =
[
λ3P0 λ

3P1 λ
2I λ2P3 λ

2P4 λ
2P5 λI λP7 λP8 I P10 P11

]B
,

and

LK =
[
λ9I λ8I λ7I λ6I λ5I λ5P T

5 λ4I λ4P T
7 λ3I λ2I λI I

]B
.

Example 3.5 Let k = 12, m = (−12 : −8), andq = (6 : 7, 5, 4, 0 : 3). In this
case,c−k = 4, −m1 is the empty tuple, andz = q. Therefore,α = 4. Similarly,
revm = (−8,−9,−10,−11,−12) = (m′

1,−12), which is already in column standard
form, revq = (3, 2, 1, 0, 4 : 5, 7, 6), soz′ = csf(−revm′

1, rev q) = (11, 10, 9, 8, 7, 3 :
6, 2, 1, 0), andα = 9 in this case. Then, ifK(λ) = λMm −Mq, Theorem 3.3 gives

RK =
[
λ4P0 λ

4P1 λ
4P2 λ

4P3 λ
3I λ3P5 λ

2I λI I P9 P10 P11

]B
,

and

LK =
[
λ8I λ7I λ6I λ5I λ4I λ3I λ3P T

6 λ3P T
7 λ3P T

8 λ2I λI I
]B

.

3.3. Eigenvectors and minimal bases of FPR

We provide in this section formulas for the right (respectively, left) eigenvectors and min-
imal bases of FPR withrm andrq (resp.rev lm andrev lq) in Definition 2.17 being type 1
tuples relative tom andq (resp.revm andrevq). This case seems to be the most relevant
for applications. For example, all symmetric and palindromic families of linearizations
considered in [6, 24] correspond to this case. However, there are examples of symmetric
FPR linearizations in which the previous tuples are not of type 1 [4].

The families of symmetric linearizations in [24] are addressed in Section 4.3.1. To de-
rive appropriate formulas for the eigenvectors and minimalbases of FPR when the tuples
are not of type 1 seems to be quite involved and remains an openproblem.

Theorem 3.6: Let P (λ) be a matrix polynomial of degreek and let L(λ) =
λMlmMlqMmMrqMrm −MlmMlqMqMrqMrm be a FPR.

(a) Assume thatrm andrq are type 1 tuples relative tom andq, respectively. Lets(q, rq)
ands(m, rm) be the simple tuple associated with(q, rq) and(m, rm), respectively. Set
RL(P, λ) := R

K̃
(P, λ), whereK̃(λ) = λMs(m,rm) −Ms(q,rq) is a GF pencil. Then

(a1) {v1(λ), . . . , vp(λ)} is a right minimal basis of P (λ) if and only if
{RL(P, λ)v1(λ), . . . ,RL(P, λ)vp(λ)} is a right minimal basis ofL(λ).

(a2) v is a right eigenvector ofL(λ) associated with the eigenvalueλ0 if and only if
v = RL(P, λ0)x, wherex is a right eigenvector ofP (λ) associated withλ0.

Moreover, ifs(q, rq) hasc̃0 consecutions at0, then the(k − c̃0)th block ofRL is equal
to In.

(b) Assume thatrev lm and rev lq are type 1 tuples relative torevm and revq, respec-
tively. Let s(rev q, rev lq) and s(revm, rev lm) be the simple tuple associated with
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(revq, rev lq) and (revm, rev lm), respectively. SetLL(P, λ) := R
K̂
(P, λ), where

K̂(λ) = λMs(revm,rev lm)(P
T )−Ms(revq,rev lq)(P

T ) is a GF pencil. Then
(b1) {w1(λ), . . . , wp(λ)} is a left minimal basis of P (λ) if and only if

{LL(P, λ)w1(λ), . . . ,LL(P, λ)wp(λ)} is a left minimal basis ofL(λ).
(b2) w is a left eigenvector ofL(λ) associated with the eigenvalueλ0 if and only ifw =

LL(P, λ0)y, wherey is a left eigenvector ofP (λ) associated withλ0.
Moreover, ifs(rev q, rev rq) hasĉ0 consecutions at0, then the(k − ĉ0)th block ofLL

is equal toIn.

Example 3.7 Let L(λ) = λMlmMlqMmMrqMrm − MlmMlqMqMrqMrm be the FPR
associated with a matrix polynomial of degreek = 12, with q = (6, 1 : 5, 0), rq = (1 : 4),
m = (−7,−8,−12 : −9), rm = (−12 : −10,−12 : −11) , lq = (0) , lm = (−8,−9).
Then,(q, rq) = (6, 1 : 5, 0 : 4) and s(q, rq) = (6, 5, 0 : 4). Similarly, (m, rm) =
(−7,−8,−12 : −9,−12 : −10,−12 : −11) ands(m, rm) = (−7,−8,−9,−10,−12 :
−11), so c̃−k = 1. Also, (rev q, rev lq) ∼ (5 : 6, 4, 3, 2, 0 : 1, 0), s(rev q, rev lq) =
(5 : 6, 4, 3, 2, 1, 0), (revm, rev lm) ∼ (−9 : −7,−10,−11,−12,−9 : −8), and
s(revm, rev lm) = (−7,−10 : −8,−11,−12), so ĉ−k = 0. Let K̃(λ) = λMs(m,rm) −

Ms(q,rq), and K̂(λ) = λMs(revm,rev lm) − Ms(rev q,rev lq). Following the notation in
the statement of Theorem 3.3, we havẽm1 = (−7,−8,−9,−10) and thenz̃ =
(10, 9, 8, 7, 6, 5, 0 : 4). Similarly, m̂1 = (−7, 10 : −8,−11) andẑ = (11, 8 : 10, 7, 5 :
6, 4, 3, 2, 1, 0). Hence

RL =
[
λ7P0 λ

6I λ5I λ4I λ3I λ2I λI I P8 P9 P10 P11

]

and

LL =
[
λ8I λ7I λ7P T

2 λ7P T
3 λ6I λ5I λ5P T

6 λ4I λ3I λ2I λI I
]
.

3.4. Application: conditioning of eigenvalues

Although all linearizations of a given matrix polynomialP (λ) have the same eigenvalues
asP (λ), the presence of rounding errors may produce quite different results when the
eigenvalues are computed using different linearizations and when computing the eigen-
values directly from the polynomial. The notions ofconditioningandbackward error[22]
measure the effect of rounding errors in the final (computed)quantities. In particular, con-
dition numbers measure how perturbations in the data affectthe final result. In the2-norm,
the (normwise) condition number of the simple eigenvalueλ0 of the matrix polynomial
(1) is given by

κP (λ0) =

(∑k
j=0 |λ0|

j‖Aj‖2
)
‖y‖2‖x‖2

|λ0||y∗P ′(λ0)x|
,

wherey andx are, respectively, a left and a right eigenvector associated with λ0 andP ′

denotes the derivative ofP with respect to the variableλ [22]. Similarly, when considering
a linearizationH(λ) = λX + Y of P (λ), we have

κH(λ0) =
(|λ0|‖X‖2 + ‖Y ‖2) ‖w‖2‖v‖2

|λ0||w∗H ′(λ0)v|
,

where noww andv denote a left and a right eigenvector ofH associated withλ0. It can
be seen thaty∗P ′(λ0)x = w∗H ′(λ0)v [14, Lemma 3.2]. Hence, the ratio between the
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condition number ofλ0 as an eigenvalue of the linearization and the condition number of
λ0 as an eigenvalue of the matrix polynomial is equal to

κH(λ0)

κP (λ0)
=

(|λ0|‖X‖2 + ‖Y ‖2)(∑k
j=0 |λ0|j‖Aj‖2

) ·
‖w‖2‖v‖2
‖y‖2‖x‖2

.

As a consequence, the ratio between the norm of eigenvectors(‖w‖2‖v‖2) / (‖y‖2‖x‖2)
plays a relevant role in comparing the conditioning ofλ0 in H with the conditioning ofλ0

in P . To measure this ratio, our formulas relating the eigenvectors of linearizations with
the eigenvectors of the matrix polynomial may be useful.

4. Proof of the main results

In the following subsections we will prove Theorems 3.1, 3.3and 3.6. We will only prove
the part regarding the right eigenvectors and minimal bases. The statements about the
left eigenvectors can be obtained from the right ones by using the following observation.
Given a index tuplet, let Mt(P ) be the matrix in (7). LetH(λ) = λMa(P ) −Mb(P ),
wherea andb are index tuples satisfying the SIP with indices (maybe withrepetitions)
from {0, 1, . . . , k,−0,−1,−2, . . . ,−k} (notice that this includes all three families of
Fiedler pencils, GF pencils and FPR). ThenH(λ)T = λMrev a(P

T )−Mrevb(P
T ). Since

the left eigenvectors and left minimal bases ofH(λ) are the right eigenvectors and right
minimal bases ofH(λ)T , we can get formulas for the left eigenvectors and minimal bases
by reversing the tuples of the coefficient matrices ofH(λ) and replacing the coefficients
Ai byAT

i in the formulas for the right eigenvectors and right minimalbases.

4.1. The case of Fiedler pencils

Theorem 3.1 follows almost immediately from Lemma 5.3 in [8], where the authors derive
formulas for the last block-column ofV (λ) and the last block-row ofU(λ) in (2) with
H(λ) being a Fiedler pencil. Our proof of Theorem 3.1 consists of relating our formulas
(8) and (9) with the ones obtained in [8].

Proof of Theorem 3.1.First, let us recall the notion ofConsecution Inversion Structure
Sequence (CISS)of a permutationq of {0, 1, ..., k − 1}, introduced in [8, Def. 3.3]. As-
sume thatq hasc1 consecutions at0, i1 inversions atc1, c2 consecutions atc1 + i1, i2
inversions atc1 + i1 + c2, and so on. Then,

CISS(q) := (c1, i1, c2, i2, . . . , cℓ, iℓ).

Notice thatc1 and iℓ in this list may be zero, but the remaining numbers are nonzero.
Using this notation, and following Remark1, we may write

Rq =
[
Iℓ Cℓ . . . I1 C1

]B
,

where, forj = 1, . . . , ℓ,

Ij = λi1+···+ij−1+j




λij−1I
...
λI
I




B

and Cj = λi1+···+ij−1+j−1




I
Pα

j
1

...
Pα

j
cj




B

,
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(we seti0 := 0) and

αj
i = k − (c1 + i1 + · · ·+ cj−1 + ij−1 + cj) + i− 1 , for i = 1, . . . , cj .

These are precisely the formulas (5.3) in [8], which are the building blocks of formula
(5.4) (also in [8]), which generates the right eigenvectorsand minimal bases of the Fiedler
pencil Fq. The fact thatRq contains an identity block follows immediately from this
formula. �

4.2. The case of PGF pencils

To prove Theorem 3.3 we use the following elementary observation. LetB be a block-
column matrix consisting ofk square blocks of sizen. WhenB is multiplied on the
left by Mk−1, only the first and second blocks ofB are modified. When multiplied by
Mk−2Mk−1 only the first, second, and third blocks ofB are modified. Thus, when multi-
plying M(k−j:k−1)B the only blocks ofB that can be altered are the blocks with indices
from 1 to j + 1.

Proof of Theorem 3.3.Let K(λ) = λMm − Mq be a PGF pencil associated with a
matrix polynomialP (λ) and such thatm andq are index tuples in column standard form.
We only prove (b), since (a) can be obtained using similar arguments. We construct a right
eigenvector ofK(λ) from strict equivalence with a Fiedler pencil and show that this strict
equivalence preserves an identity block in the formulas that lead to the eigenvectors of the
Fiedler pencil, proving the last part of the statement.

Let us assume thatm hasc−k consecutions at−k. Then, there exists an index tuplem1

such that

K(λ) = λMm1
M(−k:−k+c−k) −Mq. (11)

Notice that the index tuple(−revm1,q) is a permutation of{0, 1, . . . , k − c−k − 1}. Let
z = csf(−revm1,q) = (bα,bα−1, . . . ,b1) andz̃ = csf(−revm1,q, k− c−k : k− 1).
We construct the following Fiedler pencil associated withP (λ):

Fz̃(λ) = M−revm1
K(λ)M(k−c−k:k−1) = λM−k −M(−revm1,q,k−c−k:k−1) , (12)

whereM(k−c−k:k−1) = I if c−k = 0. We know that there exist unimodular matricesU(λ)
andV (λ) such that

U(λ)Fz̃(λ)V (λ) =

[
I 0
0 P (λ)

]
,

which can be rewritten as

(U(λ)M−revm1
)K(λ)(M(k−c−k:k−1)V (λ)) =

[
I 0
0 P (λ)

]
.

Note that K(λ)v(λ) = 0 if and only if v(λ) = M(k−c−k:k−1)Rz̃x(λ), for
somex(λ) with P (λ)x(λ) = 0, whereM(k−c−k:k−1)Rz̃ is the last block-column of
M(k−c−k:k−1)V (λ). Recall that the explicit expression forRz̃ is given in Theorem 3.1.
Thus, ifc−k = 0, thenRK = Rz̃ = Rz, and this proves part(i) in the statement.

Now assume thatc−k 6= 0. Let bα = (w : k − c−k − 1), for somew > 0. Thenz̃ is
equivalent to(w : k − 1,bα−1, . . . ,b1). By Theorem 3.1,

Rz̃ =
[
λα−1[I P1 . . . Pk−1−w] Bk−w Bk−w+1 . . . Bk−1

]B
, (13)



December 18, 2012 14:18 Linear and Multilinear Algebra Fernando_18_12

16 María I. Bueno, Fernando De Terán

whereBi, for i = k − w, . . . , k − 1, are as in the statement. Now, multiplyingRz̃ on the
left byM(k−c−k:k−1) only affects the firstc−k+1 blocks ofRz̃. Since(w : k−1) contains
at leastc−k + 1 elements, only some of the firstk − w blocks in (13) will be modified.

It is easy to check by direct multiplication thatM(k−c−k:k−1)Rz̃ is equal to

[
λα[P0 P1 . . . Pc−k−1] λ

α−1[I Pc−k+1 . . . Pk−1−w] Bk−w . . . Bk−1

]B
,

and this proves(ii) .
Finally, for the claim on the identity block, we first assume that k − c−k 6= c0 + 1,

and thenc0 + 1 ∈ m1 or c0 + 1 ∈ q. This implies thats ≥ 2. From Theorem 3.1,
the (k − c0)th block ofRz̃ (given by (13)) is equal toIn and, since multiplying on the
left by M(k−c−k:k−1) does not affect this block, the identity block remains inRK . If
k − c−k = c0 + 1, thens = 1 and, by the previous arguments,RK = [B1 B2]

B, where
the first block of ofB2 is equal toIn. This is, precisely, the(k − c0)th block ofRK . �

4.3. The case of FPR

Proof of Theorem 3.6.We first notice that, from the conditions in the statement of the
theorem, we get

(q, rq) ∼ (rq, s(q, rq)) and (m, rm) ∼ (rm, s(m, rm)). (14)

We may prove (14) inductively on the number of indices ofrq andrm. Let us focus,
for instance, on the first identity (for the second one we can proceed in a similar way).
Let us assume thatrq = (s1, ..., sr), wheresi denotes theith index inrq, and setq =
(bα,bα−1, . . . ,b1), with bi = (ti−1 + 1, ti), for i = 1, . . . , α. Sincerq is of type 1
relative toq, we haves1 = td−1 + 1 < td, for some1 ≤ d ≤ α. Hence(q, s1) ∼
(td−1 +1,bα, . . . ,bd+1, td−1+2 : td,bd−1, td−1+1, . . . ,b1) = (rq, s(q, s1)), if d > 1,
and (q, s1) ∼ (0,bα, . . . ,b2, 1 : t1, 0) = (rq, s(q, s1)), if d = 1. We can proceed
recursively to prove the claim.

Now, letL(λ) = λMlmMlqMmMrqMrm −MlmMlqMqMrqMrm , as in the statement.
Here we assume thatA0 (resp.Ak) is nonsingular if0 (resp.−k) is an index inlq, rq, or
both (resp. inlm, rm, or both). Notice that, by definition of FPR,Mrm commutes with
Mq andMrq , andMm commutes withMrq . This fact, together with (14) gives

L(λ) = λMlmMlqMrmMrqMs(m,rm) −MlmMlqMrmMrqMs(q,rq)

= MlmMlqMrmMrq(λMs(m,rm) −Ms(q,rq)) = MlmMlqMrmMrqK̃(λ).

Now the result follows, since multiplication on the left by nonsingular matrices do not
change the eigenvectors and the minimal bases. �

Example 4.1 Let L(λ) = λMlmMlqMmMrq − MlmMlqMqMrq be the FPR of a ma-
trix polynomial P (λ) of degreek = 15 with q = (8, 4 : 7, 0 : 3), m = (−11 :
−9,−12,−15 : −13), and rq = (4 : 6), rm = ∅. Then, the simple tuple associ-
ated with(q, rq) is q̃ = (8, 7, 0 : 6). Following the notation in Theorem 3.6, we have
K̃(λ) = λMm −Mq̃. In this case,(−revm1,q) = (12, 9 : 11, 8, 7, 0 : 6), thus

R
K̃

=
[
λ5P0 λ

5P1 λ
4I λ3I λ3P4 λ

3P5 λ
2I λI I P9 P10 P11 P12 P13 P14

]B
.

Now setrq = ∅, rm = (−15 : −14). Then, the simple tuple associated with(m, rm)

is m̃ = (−11 : −9,−12,−13,−15 : −14). We now haveK̃(λ) = λMm̃ −Mq. In this
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case,(−revm1,q) = (13, 12, 9 : 11, 8, 4 : 7, 0 : 3), thus

R
K̃

=
[
λ6P0 λ

5I λ4I λ3I λ3P4 λ
3P5 λ

2I λI λP8 λP9 λP10 I P12 P13 P14

]B
.

Example 4.2 LetK(λ) = λM−5M−4M−3M−8M−7M−6 −M2M0M1 be the PGF pen-
cil associated with a matrix polynomialP (λ) with degreek = 8. We havem = (−5 :
−3,−8 : −6) andq = (2, 0 : 1) in column standard form. By direct computation we get

K(λ) =




−I 0 λA8 0 0 0 0 0
λI −I λA7 0 0 0 0 0
0 0 −I 0 0 λI 0 0
0 λI λA6 −I 0 λA5 0 0
0 0 0 λI −I λA4 0 0
0 0 0 0 λI λA3 +A2 A1 −I
0 0 0 0 0 −I λI 0
0 0 0 0 0 0 A0 λI




and, from Theorem 3.3,

RK =
[
λ3A8 λ

3P1 λ
2I λ2P3 λ

2P4 λI I P7

]B
.

It is straightforward to see thatK(λ)RK =
[
0 0 0 0 0 0 0 P (λ)

]B, soK(λ)RK(λ)x =
0 if and only if P (λ)x = 0. Now, setrm = (−5 : −4) andrq = (0). We have that both
(m, rm) and(q, rq) satisfy the SIP and also that bothrm andrq are of type 1 relative to
m andq, respectively. Moreover, a simple computation gives

RL := M−rev rmM−rev rqRK =
[
λ3A8 λ

3P1 λ
3P2 λ

3P3 λ
2I λI I −A−1

0 P7

]B
.

It is also immediate to see that the FPR defined asL(λ) := K(λ)MrmMrq is

L(λ) =




−I 0 0 0 λA8 0 0 0
λI −I 0 0 λA7 0 0 0
0 0 0 0 −I λI 0 0
0 λI −I 0 λA6 −A5 λA5 0 0
0 0 λI −I λA5 −A4 λA4 0 0
0 0 0 λI λA4 λA3 +A2 A1 A0

0 0 0 0 0 −I λI 0
0 0 0 0 0 0 A0 −λA0




,

and thatL(λ)RL =
[
0 0 0 0 0 0 0 P (λ)

]B
, soL(λ)RLx = 0 if and only if P (λ)x = 0.

However, Theorem 3.6 gives the following:

R
K̃

:=
[
λ4A8 λ

4P1 λ
4P2 λ

4P3 λ
3I λ2I λI I

]B
,

which corresponds to the PGF pencilK̃(λ) = λMs(m,rm)−Ms(q,rq), wheres(m, rm) =
(−3,−8 : −4) ands(q, rq) = (2, 1, 0) are the simple tuples associated with(m, rm)
and (q, rq), in column standard form. It is straightforward to check that L(λ)R

K̃
=[

0 0 0 0 0 P (λ) 0 0
]B

, soL(λ)R
K̃
x = 0 if and only if P (λ)x = 0.

The case of indices which are not of type 1 will not be addressed in this work. When the
column standard form of bothrm andrq contains at most one index not being of type 1,
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we may determine the blocks inM−rev rqM−rev rmRK by direct multiplication. However,
if there is more than one index inrm or rq not being of type 1, then the problem of keeping
track of the blocks which are moved after successive multiplications by the corresponding
Mj matrices becomes an involved task, and remains as an open problem.

4.3.1. Symmetric pencils with repetition

Although a full characterization of all symmetric FPR has been recently presented in
[4], here we focus on two subfamilies introduced in earlier references because they involve
type 1 tuples and allows us to exemplify our results in this paper.

Let us begin with the symmetric linearizations considered in [17] and [18], and recently
analyzed in [24] in the context of Fiedler pencils. These linearizations are FPR. In par-
ticular, for a given0 ≤ h ≤ k − 1, we setLS

k,h(λ) := λMmMrqMrm − MqMrqMrm ,
with q = (0 : h), m = (−k : −h − 1), rq = (0 : h − 1, 0 : h − 2, . . . , 0 : 1, 0), and
rm = (−k : −h− 2,−k : −h− 3, . . . ,−k : −k + 1,−k) (see [24, Cor. 2]). Notice that,
with the notation introduced in Section 2.3, we havelq = lm = ∅ for all these pencils.

Notice that bothrq andrm are of type 1 relative toq andm, respectively. Moreover,
with the notation of Theorem 3.6, we haves(q, rq) = (h, h − 1, h − 2, . . . , 1, 0) and
s(m, rm) = (−h− 1,−h − 2, . . . ,−k). Therefore,

RLS
k,h

=
[
λk−1I λk−2I λk−3I . . . λI I

]B
.

Note that this expression does not depend onh. By the symmetry of the construction, this
is also equal toLLS

k,h
. As an example of these pencils, let us consider the casek = 4 and

h = 2. We have

LS
4,2(λ) = λM(−4:−3)M(0:1,0)M(−4) −M(0:2)M(0:1,0)M(−4)

=




−A4 λA4 0 0
λA4 λA3 +A2 A1 A0

0 A1 −λA1 +A0 −λA0

0 A0 −λA0 0


 .

Notice thatLS
4,2RLS

4,2
=

[
0 P (λ) 0 0

]B
, and that(LS

4,2)
TRLS

4,2
=

[
0 P (λ)T 0 0

]B
, so

RLS
4,2
x = 0 if and only iofP (λ)x = 0.

We want to emphasize that, as mentioned in [24, p. 336], the pencilsLS
k,h(λ) are a basis

for the vector spaceDL(P ) introduced in [19]. This is an immediate consequence of the
following three facts:

(i) EveryLS
k,h(λ) belongs toDL(P ) [18, p. 225].

(ii) The dimension of the vector space spanned byLS
k,0(λ), . . . , L

S
k,k−1(λ) is k (provided

thatAk 6= 0) [18, Lemma 10].
(iii) The dimension of the vector spaceDL(P ) is k [19, Cor. 5.4].

Next we consider a recent construction of symmetric linearizations introduced by Volo-
giannidis and Antoniou in [24, p. 338]. Let0 ≤ h ≤ k − 1 and consider the cases:

(a) h is odd: Setq = (qodd,qeven) andm = (modd,meven), whereqodd = (1, 3, . . . , h),
qeven = (0, 2, . . . , h−1), modd = (−h−2,−h−4, . . .), andmeven = (−h−1,−h−
3, . . .). Also, lq = qeven, rq = ∅, lm = ∅, rm = modd.

Notice that the column standard form ofq andm is (h, h − 2 : h − 1, h − 4 :
h− 3, . . . , 1 : 2, 0) and(−h − 2 : −h− 1,−h − 4 : −h− 3, . . .), respectively. Thus,
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rm is of type 1 relative tom. Moreover, with the notation of Theorem 3.6, we have
s(m, rm) = (−h − 1,−h − 3 : −h − 2,−h − 5 : −h − 4, . . . ,−k) if k is odd, and
s(m, rm) = (−h−1,−h−3 : −h−2,−h−5 : −h−4, . . . ,−k : −k+1) if k is even.
However,rev lq is not of type 1 relative torevq. Nonetheless, by the symmetry of the
construction, the same formulas allow us to recover both left and right eigenvectors and
minimal bases (replacingAi byAT

i ).
(b) h is even: Setq = (qodd,qeven) and m = (modd,meven), where nowqodd =

(1, 3, . . . , h − 1), qeven = (0, 2, . . . , h), modd = (−h − 1,−h − 3, ...), meven =
(−h− 2,−h− 4, . . .). Also, lq = ∅, rq = qodd, lm = meven, rm = ∅.

As in the previous case,rq is of type 1 relative toq.

Example 4.3 Let k = 6 andh = 3. Thenq = (qeven,qodd) = ((1, 3), (0, 2)) and
m = (meven,modd) = ((−5), (−4,−6)), rm = (−5), lq = (0 : 2) andrq = ∅ = lm.
Then

L(λ) = λM(0,2)M(−5:−4,−6)M−5 −M(0,2)M(3,1:2,0)M−5

=




0 −I λI 0 0 0
−I λA6 −A5 λA5 0 0 0
λI λA5 λA4 +A3 A2 −I 0
0 0 A2 −λA2 +A1 λI A0

0 0 −I λI 0 0
0 0 0 A0 0 −λA0



.

Notice thatL(λ) is, indeed, block-symmetric.
The simple tuple associated with(m, rm) in column standard form iss(m, rm) =

(−4,−6 : −5), and the simple tuple associated with(q, rq) in column standard form is
s(q, rq) = (3, 1 : 2, 0). Then, following the notation of Theorem 3.6,̃m1 = (−4) and
z̃ = (4, 3, 1 : 2, 0) is the tuple in column standard form similar to(−m̃1, s(q, rq)). Hence,
by Theorem 3.6, we have

RL =
[
λ4A6 λ

3I λ2I λI λP4 I
]B

.

It is straightforward to check thatL(λ)RL =
[
0 0 0 0 P (λ) 0

]B
, soL(λ)RLx = 0 if

and only ifP (λ)x = 0. SinceL(λ) is block-symmetric, we have that

RL(P
T ) =

[
λ4AT

6 λ3I λ2I λI λP T
4 I

]B
.

5. Conclusions and future work

We have obtained explicit formulas for the left and right eigenvectors and minimal bases
of the following families of linearizations of square matrix polynomials: (a) the Fiedler
pencils; (b) the GF pencils; and (c) the FPR with type 1 tuples. We have also analyzed two
particular families of symmetric linearizations that belong to the last family. It remains,
as an open problem, to obtain formulas for eigenvectors and minimal bases of FPR con-
taining tuples which are not of type 1. Our formulas relate the eigenvectors and minimal
bases of these linearizations with the eigenvectors and minimal bases of the polynomial.
The formulas for the left and right eigenvectors may be useful in the comparison of the
conditioning of eigenvalues of matrix polynomials throughlinearizations. We think that
this is now one of the most challenging questions regarding the PEP solved by lineariza-
tions. There are several previous pioneer works where the conditioning of eigenvalues of
linearizations and the conditioning of eigenvalues of the polynomial have been compared
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[15, 16]. The present paper may be useful for the continuation of these works. In par-
ticular, to compare the conditioning of eigenvalues in the Fiedler families (including the
Fiedler pencils, the GF pencils and the FPR) with the conditioning of eigenvalues in the
matrix polynomial.
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Appendix A. Eigenvectors and minimal bases of GF pencils that are not proper

Theorem A.1: LetK(λ) = λMm−Mq be a GF pencil of a regular matrix polynomial
P (λ) of degreek. LetRK(P, λ) be the followingnk × n matrix polynomial.

(a) Assume0, k ∈ q. Let q′ = q r {k} and z = csf(−revm,q′). We distinguish two
cases:

(a1) If k − 1 is to the left ofk in (−revm,q), then

RK(P, λ) :=

[
Ak

Rz(2 : k)

]
,

with Rz as in(3.1).
(a2) If k − 1 is to the right ofk in (−revm,q), then

RK(P, λ) := Rz .

(b) Assume−0,−k ∈ m. Setcsf(k +m) = (k − c−0 : k, k +m′).

(b1) If c−0 = k, then

RK(P, λ) :=
[
λI λP1 . . . λPk−2 A0

]B
.

(b2) If c−0 < k, then

RK(P, λ) := R
K̃
,

whereK̃(λ) = λMm′ −M(0:c−0)Mq is a PGF pencil.

(c) Assume−0 ∈ m andk ∈ q. Setcsf(k +m) = (k − c−0 : k, k +m′) andcsf(q) =
(t : k,q′). We distinguish the following two cases:

(c1) If t > c−0 + 1, then

RK(P, λ) := R
K̃
,
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whereK̃(λ) = λM(−k:−t)Mm′ −M(0:c−0)Mq′ is a PGF pencil.
(c2) If t = c−0 + 1, then

RK(P, λ) :=
[
Ak P1 . . . Pk−1

]B
.

Then

(a) {v1(λ), . . . , vp(λ)} is a right minimal basis of P (λ) if and only if
{RK(P, λ)v1(λ), . . . ,RK(P, λ)vp(λ)} is a right minimal basis ofFz(λ).

(b) v is a right eigenvector ofK(λ) associated with the eigenvalueλ0 if and only ifv =
RK(P, λ0)x, wherex is a right eigenvector ofP (λ) associated withλ0.

Proof : (a1) In the conditions of the statement, we have that(−revm,q) is equivalent to
(−revm,q′, k), so K(λ) = λMm −Mq′Mk, and thenFσ(λ) := M−revmK(λ)M−k =
λM−k − M−revmMq′ is a Fiedler pencil. Now the claim is a consequence of Theorem
3.1 applied toFσ(λ).

(a2) In this case we have that(−revm,q) is equivalent to(k,−revm,q′), soFσ(λ) :=
M−kM−revmK(λ) = λM−k − M−revmMq′ is also a Fiedler pencil, and the result is
again a consequence of Theorem 3.1 applied toFσ(λ).

(b1) In this case we have

K(λ) = λM−kM−k+1 · · ·M−1M−0 − I,

soK(λ)M0 = λM−kM−k+1 · · ·M1−M0 is a PGF pencil, and the result is an immediate
consequence of Theorem 3.3 applied to this pencil.

(b2) Notice that, in this case,K(λ) = λM(−c−0:−0)Mm′ − Mq, so K̃(λ) =
M(0:c−0)K(λ) is a PGF pencil, and the result follows.

(c1) Now we haveK(λ) = λM(−c−0:−0)Mm′ − M(t:k)Mq′ , so K̃(λ) =
M(0:c−0)M(−k:−t)K(λ) is a PGF pencil, and the result follows.

(c2) In this case, we haveK(λ) = λM(−c−0:−0)−M(c−0+1:k), soM(0:c−0)K(λ)M−k =
C1(λ) is the first companion form. Hence, the claim is a consequenceof Theorem 3.1.�

For the left eigenvectors and minimal bases, similar results can be stated using the
matrix polynomialP T and reversal of all tuples appearing in Theorem A.1.

Appendix B. The infinite eigenvalue

A matrix polynomialP (λ) is said to have aninfinite eigenvalueif zero is an eigenvalue of
revP (λ). Moreover, the left and right eigenspaces of the infinite eigenvalue ofP (λ) are
the left and right eigenspaces of the zero eigenvalue ofrevP (λ), respectively.

In this appendix we provide formulas for the left and right eigenvectors associated with
the infinite eigenvalue in the following cases: (a) Fiedler pencils; (b) PGF pencils; and (c)
FRP with type 1 tuples. Hence, the results we will state here are complementary to the
ones in Theorems 3.1, 3.3 and 3.6, respectively, for finite eigenvalues.

The key to derive formulas for the left and right eigenvectors associated with the infinite
eigenvalue relies in the following fact: Given a matrix polynomialP (λ) =

∑k
i=0 λ

iAi,
with Ak 6= 0, the vectorv (respectivelyw) is a right (resp. left) eigenvector ofP (λ)
associated with the infinite eigenvalue if and only ifAkv = 0 (resp.AT

kw = 0), that is,
left and right eigenvectors of a matrix polynomial associated with the infinite eigenvalue
are vectors belonging to the left and right nullspace, respectively, of its leading coefficient.
In all three statements below,P (λ) is assumed to be a regular matrix polynomial as in (1),
and the eigenvectors of linearizations are partitioned into k blocks with lengthn.
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Theorem B.1: LetFσ(λ) be a Fiedler pencil ofP (λ). Then:

(a) A right eigenvector associated with the infinite eigenvalue of P (λ) is of the form[
v 0 . . . 0

]B
∈ Cnk×n, wherev 6= 0 is such thatAkv = 0.

(b) A left eigenvector associated with the infinite eigenvalue of P (λ) is of the form[
w 0 . . . 0

]B
∈ Cnk×n, wherew 6= 0 is such thatAT

kw = 0.

Proof : The result is an immediate consequence of the observation inthe paragraph just
before the statement and the fact that the leading coefficient of every Fiedler pencil is
M−k = diag (Ak, In(k−1)). �

Theorem B.2: LetK(λ) = λMm −Mq be a PGF pencil associated withP (λ), and
c−k, i−k be, respectively, the number of consecutions and inversions ofm at−k.

(i) Let v 6= 0 be such thatAkv = 0. Then
[
v1 . . . vc−k

v 0 . . . 0
]B

, wherevi = −Ak−iv,
for i = 1, . . . , c−k, is a right eigenvector ofK(λ) associated with the infinite eigen-
value.

(ii) Let w 6= 0 be such thatAT
kw = 0. Then

[
w1 . . . wik w 0 . . . 0

]B
, wherewi =

−AT
k−iw, for i = 1, . . . , i−k, is a left eigenvector ofK(λ) associated with the infi-

nite eigenvalue.

Proof : The result for the right eigenvectors is an immediate consequence of the fact
that, if we writem = (−revm1,−k : −k + c−k), thenMmx = 0 if and only if
M(−k:−k+c−k)x = 0, and

M(−k:−k+c−k) =




0 Ak

I Ak−1

. . .
...

I Ak−c−k

In(k−c−k−1)



.

The result for the left eigenvectors is a consequence of(i) applied toK(λ)T . �

Theorem B.3: LetL(λ) = λMlmMlqMmMrqMrm −MlmMlqMqMrqMrm be a FPR
of a matrix polynomialP (λ). Assumerm, rq, rev lm and rev lq are of type 1 relative to
m, q, revm andrevq, respectively. Letc−k be the number of consecutions of−k in the
simple tuple associated with(m, rm) and i−k be the number of inversions of−k in the
simple tuple associated with(lm,m).

(i) Let v 6= 0 be such thatAkv = 0. Then
[
v1 . . . vc−k

v 0 . . . 0
]B

, wherevi = −Ak−iv,
for i = 1, . . . , c−k, is a right eigenvector ofL(λ) associated with the infinite eigenvalue.

(ii) Let w 6= 0 be such thatAT
kw = 0. Then

[
w1 . . . wi−k

w 0 . . . 0
]B

, wherewi =

−AT
k−iw, for i = 1, . . . , i−k, is a left eigenvector ofL(λ) associated with the infinite

eigenvalue.

Proof : The proof can be carried out in a similar way as the proof of Theorem B.2. �
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