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1. Introduction

In the present paper we are concerned with eigenvectors anchah bases of lineariza-
tions of square matrix polynomials over the complex fi€ldA squaren x n matrix
polynomial overC

P(A) =) NA;, Ay, Ay €CV AL #£0, 1)

is said to beregular if the determinant ofP(\) is not the identically zero polynomial.
The matrix polynomialP()\) is singularotherwise. Thdinite eigenvalueand associated
eigenvector®f a regular matrix polynomial (1) are defined as those valyes C and
nonzero vectors € C", respectively, such thd@(\o)v = 0. They are of relevance in sev-
eral applied problems where matrix polynomials arise (Reenstance, [23] for a survey
on quadratic polynomials, and [20, 21, 25] for recent examplf applications of higher
degree polynomials). The problem of the computation of migkies and eigenvectors
of regular matrix polynomials, which is known as the Polymanikigenvalue Problem
(PEP), has attracted the attention of many researchersiemecal linear algebra. When
the matrix polynomial is singular, instead of the eigenuextve are interested minimal
bases which are particular bases of the right and left nullspaafe®(\) and are also
relevant in applications [2, 11].
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The standard way to numerically solve the PEP for regulaymmhials is through the
use oflinearizations These are essentially matrix penddg\) = AX + Y, with X, Y €
Crkxnk sharing certain information with the polynomi#a(\), in particular, thenvariant
polynomials which include the eigenvalues and its associgt@dial multiplicities (see
[13] for the definition of these notions). However, the eiggstors of H (A) andP()\) are
not the same, and actually they can never be the same bebawseds off (\) andP(\)
are different. Similarly, for singular matrix polynomialsinimal bases are not usually
preserved by linearization. Then, the problem of relatimg ¢igenvectors and minimal
bases ofP(\) with the ones of7 () becomes essential in numerical computations.

An important issue to determine the errors in the numericaiputation of eigenvalues
is the eigenvalue condition numbefthe standard formula for the condition nhumber of
eigenvalues of a matrix polynomi&l(\) involves the associated left and right eigenvec-
tors of P(\) [22]. When using linearizations to compute eigenvalue®©X), we have
to consider the eigenvalue condition numbers correspgnidirthe linearizationd (\),
which are, in general, larger than the ones of the polynoial). Actually, these con-
dition numbers involve the eigenvectors Bf(\), instead of the eigenvectors &f(\).
Hence, in order to compare the condition numbers of the gaeas corresponding to
H ()) with the condition numbers correspondingRg)\), the knowledge of the left and
right eigenvectors of ()\) is relevant. Moreover, it would be desirable to know the-rela
tionship between these eigenvectors and the eigenvedtéte\).

The classical linearizations of matrix polynomials usegbiactice have been tHest
andsecond (Frobenius) companion forifi]. However, during the last decade several
new families of linearizations have been introduced byedéht authors [1, 3, 9, 19, 24],
some of them extending other known families, like the onethiced back in the 1960's
in [17]. The natural subsequent step is to analyze the adgastor disadvantages of these
new families and, in particular, to study their numericattees. In connection with the
problems mentioned in the previous paragraphs, a natwsastep for this would be:

(P1) Find recovery formulas for eigenvectors and minimaldseofP () from the ones of

the linearizations.

(P2) Obtain explicit formulas for the eigenvectors and mialibases of the linearizations in

terms of the eigenvectors and minimal base®0X).

We want to stress that solving (P2) implies solving (P1),tbatconverse is not true.

For the families of linearizations introduced in [19], Pierin (P1) has been solved
in [7, 15, 19], but (P2) has been only partially solved. Fa thmily of Fiedler pencils
introduced in [3] (and named later in [8]), both (P1) and (FP&)e been completely solved
in [8] for square matrix polynomials and in [10] for rectamgupolynomials. For the
family of generalized Fiedler pencilsilso introduced in [3] (though named in [5]) (P1)
has been solved in [5], but (P2) remains open. The preserdr mhgals with problem
(P2). Our main goal is to obtain formulas for the eigenvetord minimal bases of the
generalized Fiedler pencils and th&dler pencils with repetitionwhich is the family
recently introduced in [24]. These formulas will be giverienms of the eigenvectors and
minimal bases of the matrix polynomial. We will also provalsimpler expression of the
formula obtained in [8] for the eigenvectors of Fiedler pnc

The paper is organized as follows. In Section 2 we introduasidbnotation and def-
initions, and we recall the families of linearizations thie¢ have mentioned above. In
Subection 2.4 we recall the notion of eigenvectors and mahimases of matrix polyno-
mials. In Section 3 we present the main results of the papenety, formulas for the
left and right eigenvectors and minimal bases of the famitie Fiedler pencils, proper
generalized Fiedler pencils and Fiedler pencils with riépat We have also included a
subsection where we illustrate how these formulas couldseéuliin the comparison of
condition numbers of eigenvalues of linearizations. ®&ci is devoted to the proofs of
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the mains results, and in Section 5 we summarize the maimilotions of the paper and
we pose some open problems that appear as a natural comtimobthis work. The case
of non-proper generalized Fiedler pencils is addressedoipeAdix A, because this is a
very particular case which deserves a separate treatnieallyi-in Appendix B we obtain
formulas for left and right eigenvectors associated withittfinite eigenvalue of regular
polynomials. This case is also addressed in a final appemrdiause the techniques em-
ployed in this case have nothing to do with the main techrdéagui¢he paper, and even the
formulas for this case are very specific.

2. Basic definitions

Along the paper we use the following notatidp, will denote them x m identity matrix.
When no subindex appear in this identity, we will assume lig¢a, which is the size of
the matrix polynomial in (1). We also deal with block-padited matrices with blocks of
sizen x n. For these matrices, we will use the following operation.

Definition 2.1: If A = [A;;] is a blockr x s matrix consisting of block entried;; with
sizen x n, then itshlock transposés a block-partitioneds x ~ matrix A whose(i, 5)
block is (AB)Z‘]' = Aﬂ

Two matrix polynomials”(\) andQ(\) are said to bequivalentf there are two matrix
polynomials with constant nonzero determindnit)) andV (\) (such matrix polynomi-
als are known agnimodula), such thatQ(\) = UAN)P(A\)V(A). If U(N\) andV (\) are
constant matrices, theR(\) andQ(\) are said to bstrictly equivalent

Thereversalof the matrix polynomialP()) is the matrix polynomial obtained by re-
versing the order of the coefficient matrices, that is

k
rev P(\) := Z NAg_;.
=0

We use in this paper the classical notion of linearizatiarsfjuaren x n polynomials
(see [13] and [12] for regular matrix polynomials and [7] samgular ones).

Definition 2.2: A matrix pencilH (\) = AX +Y with X, Y € C"**"¥ is alinearization
of ann x n matrix polynomialP()\) of degreek if there exist two unimodulank x nk
matricesU (\) andV () such that

cmMY ) = [ o] @

or, in other words, ifff () is equivalent taliag (1(;_1),, P(A)). A linearizationH (\) is
called astrong linearizationf rev H(\) is also a linearization afev P(\).

In Section 2.3 we introduce the families of linearizatiorisiah are the subject of the
present paper. They are constructed using the following nk matrices, partitioned into
k x k blocks of sizen x n. Here and hereaften; denotes théth coefficient of the matrix
polynomial (1).

1
Mo = (k—1)n :| 3
I(k—l)n:| ) 0 |: _AO ) ( )
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and

Ie—iz1ym
AT o
Mi.— I 0 5 Z—l,...,]{?—l. (4)

Ii-1yn

The M; matrices in (4) are always invertible, and the inverses aengy

I—iciym 0
[ IAi . (5)

IGi—1yn

However, note thaddy, andM_, are invertible if and only ifA; and A, respectively, are.
We will also use the notation

M_;:= M1, fori=0,1,....k — 1, and M, := M~}

The notation forlM_,, differs from the standard one used in [3, 5, 8]. The reasothier
change here is that, for all but one of the families of lineatibns considered in this
paper (and this last one is addressed only in AppendiXlA), will appear in the leading
term of the linearization, and we follow the convention oingsnegative indices for the
matrices in this term. We want to emphasize also 1at, := Mo‘l. For this reason, we
will use along this paper bothand—0, with different meanings.

It is easy to check the commutativity relations

M;M; = M;M; for |li] —[j]| #1. (6)
For0 < i < k we will make use along the paper of the polynomial
Pi\) = Ap_i + Mp_ip1 + -+ XA,

This polynomial is known as thgh Horner shift ofP(\), with P(\) as in (1). Notice that
P()()\) = A, Pk()\) = P()\) and)\P,()\) = Pi-i—l()\) — Ap_i_1, foro<i<k-—1.

2.1. Index tuples, column standard form, and the SIP property

In this paper we are concerned with pencils constructed fsomducts ofM; and M _;
matrices. In our analysis, the order in which these matriqgsear is relevant. For this
reason, we will associate an index tuple with each of thesdyats to simplify our de-
velopments. We also introduce some additional conceptseteiin [24] which are related
to this notion. We use boldface letters, namiely, z . . ., for ordered tuples of indices (or
index tuplesn the following).

Definition 2.3: Lett = (i1,42,...,%,) be an index tuple containing indices from
{0,1,...,k,—0,-1,...,—k}. We say that is simpleif i; # i, forall j,l € {1,2,...,r}
with j #£ 1.

Definition 2.4: Lett = (i1,i9,...,i,) be an index tuple containing indices from
{0,1,...,k,—0,—1,...,—k}. Then,

My = My, M;, --- M;, . (7)
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We set alsaVfjy := I,.

We want to insist on the fact thatand —0 are different. We include-0 along this
section for completeness, though the only case where itdgamt is the one addressed in
Appendix A, where matrixM_ appears.

Unless otherwise stated, the matridefs, ¢ = 0,...,k, and M; refer to the matrix
polynomial P(\) in (1). When necessary, we will explicitly indicate the degence on a
certain polynomial) () by writing M;(Q) andM¢(Q).

Definition 2.5: Let t; and t; be two index tuples containing indices from
{0,1,...,k,—0,—1,...,—k}. We say thatt; is equivalentto to, and we will write
t1 ~ to, if My, = M,,.

Notice that this is an equivalence relation and that/{f can be obtained from/;, by
the repeated application of the commutativity relationsttent; is equivalent tats.

We will refer to an index tuple consisting of consecutiveegdrs as atring. We will
use the notatioliq : !) for the string of integers from to [, that is

v g+, if g <1
(q'”'—{ 0. ifg>1
Definition 2.6: Given an index tupleé = (i1, ...,1,), we define theeversetuple oft,
denoted byev t, asrevt := (ip,...,%1).
Given an index tupleé = (i1,...,4,) and an integef, we will use the following
notation:
—t:=(—i1,...,—0p), and h+t:=(h+iy,...,h+1i.).

The following two notions are basic in our developments.

Definition 2.7: [24] Lett = (i1, 49,...,4,) be an index tuple. Thetis said to satisfy
the Successor Infix Property (SIH)or every pair of indices,,i, € t with1 < a <b <
r, satisfyingi, = i, there exists at least one index= i, + 1 such that < ¢ < b.

Definition 2.8: [24] Let h be a nonnegative integer ande an index tuple containing
indices from{0, 1, ..., h}. Thent is said to be ircolumn standard fornf

t= (as : bs,as_l :bs_l,...,ag : bg,al : bl),

with0 < by <by <--- <bs_1 <bs <hand0 < a; <b;,forallj =1,...,s. Lett’
be an index tuple containing indices frdmh, —h +1,...,—1}. Thent' is said to be in
column standard fornif 4 + t’ is in column standard form.

The connection between the column standard form and the ®ifegy of an index
tuple is shown in the following result and the subsequennhdifi.

Lemma 2.9: [24] Lett = (i1,...,i,) be an index tuple containing indices from
{0,1,...,h} or from {—h,—h + 1,...,—1}, for someh > 1. Thent satisfies the SIP
if and only if t is equivalent to a (unique) tuple in column standard form.

Definition 2.10: Lett = (i1,...,%,) be an index tuple containing indices from
{0,1,...,h} or from {—h,—h + 1,...,—1}, for someh > 1, and satisfying the SIP.
Thecolumn standard form df is the unique tuple in column standard form equivalent to
t. We denote this tuple bys f(t).

Note that, in particular, it is simple, thert satisfies the SIP and, therefore, is equiv-
alent to a tuple in column standard form. In the more paricobse of a permutation
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we can obtain an expression foiin column standard form that will be used in further
developments.

Lemma 2.11: Lett be a permutation ofhg, hg + 1,...,h}, with0 < hg < h. Thent
is in column standard form if and only if

t:(ta_l—l-lth,ta_g—i-l:ta_l,...,tg—l-l:tg,tl—l-lttg,ho :tl)

for some positive integers) < t1 <ty < -+ < ta_1 < h.
Denotety = ho—1 andt, = h. We call each sequence of consecutive integers+1 :
t;),fori=1,...,a, astringin t.

The proof of Lemma 2.11 is straightforward and is left to thader. Notice that we have
an analogue to Lemma 2.11 for tuples of negative integecsuse, ift’ is a permutation
of {—qo,—qo+1,...,—q¢—2,—q}, wherel < ¢q < qo, thent’ is in column standard form
if and only if ¢ + t’ is in column standard form.

2.2. Consecutions and inversions of simple index tuples

Here we recall some definitions introduced in [8] which arg kethe formulas for the
eigenvectors and minimal bases.

Definition 2.12: Leth > 1 be an integer and be a simple index tuple with all its
elements from{0, 1,...,h} orall from{—h,—h +1,...,—1}.

(a) We say thag has aconsecutiorat j if both j, j + 1 € q andj is to the left ofj 4+ 1 in
q. We say thaty has arinversionat j if both j, j + 1 € q andj is to the right ofj + 1
in q.

(b) We say thaq_haScj (resp.i;) consecutiongresp. inversions) gtif q has consecutions
(resp.inversions)atj+1,...,5+¢; —1(resp.atj,j +1,...,5 +1i; — 1) andq has
not a consecution (resp. inversionyat- c; (resp.j + i;).

Example 2.13 Letq = (11 : 13,10,6 : 9,5,4,0 : 3). This tuple has consecutions at
0,1,2,6,7,8,11 and12. Moreoverq has three consecutions@tt has two consecutions
at1, and just one consecutionat

2.3. Fiedler pencils, generalized Fiedler pencils, and Fiedler pencilswith repetition

In this section we recall the families of Fiedler pencilsperlized Fiedler (GF) pencils,
and Fiedler pencils with repetition (FPR) of a given matritymomial, and some of their
properties. The Fiedler and GF families were introduce@®]ridr regular matrix polyno-
mials (although the authors did not assign any specific nartteese pencils). They were
also studied, and named, in [8] and [5], respectively, faragsq singular polynomials. The
Fiedler pencils have been addressed recently in [10] faangular matrix polynomials.
Finally, the FPR have been introduced in [24]. It is worth tention also that the GF
pencils have been used in the construction of structuredtinations, like symmetric [3]
and palindromic [9]. Quite recently, also symmetric [4] gradindromic [6] linearizations
have been found within the family of FPR.

In the following definitions we make use of the matrices idtroed in Definition 2.4
associated with index tuples.

Definition 2.14: (Fiedler pencils) Lef’(\) be the matrix polynomial in (1) and letbe
a permutation of0,1,...,k — 1}. Then theFiedler pencilof P(\) associated witly is

Fo(A) = AM_j, — My
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Next we introduce GF pencils. In the following,&8f= {i1,...,%,.} is a set of indices,
then—& denotes the s€t—i;, ..., —i,}.

Definition 2.15: (GF and PGF pencils). Lg®()\) be the matrix polynomial in (1). Let
{Cy, C1} be a partition 0f0, 1,...,k} (Cp andC; can be the empty set), ard m be
permutations of’y and—C, respectively. Then thgeneralized Fiedler (GFpencil of
P(\) associated witlim, q) is thenk x nk pencil

K(A) := AMy, — M.

If 0 € Cyandk € (4, then the penciK ()\) is said to be groper generalized Fiedler
(PGF) pencil of P(\).

If, in Definition 2.15 we admit’y = 0, thenM = I, and, ifC, = 0 thenMy, = L.

It is obvious that any Fiedler pendi,(\) of P()) is a particular case of a GF pencil
with Cp = {0,1,...,k — 1} andC; = {k}. We stress that GF pencils that are not proper
are defined only if4; and/orA, are nonsingular.

The following resultis proved in [5, Theorem 2.2]. We incdutihere for completeness.

Theorem 2.16: Let P()\) be ann x n matrix polynomial. Then any GF pencil &(\)
is a strong linearization foP(\).

Theorem 2.16 is true for both regular and singular polynésmi®\), but in this last
case we recall that the only GF pencils that are defined afe@tepencils.
Now we recall the notion of FPR, recently introduced in [24].

Definition 2.17: (FPR). LetP(\) be the matrix polynomial in (1), wheté, andA;, are
nonsingular matrices. Lét< h < k—1, and letq andm be permutations of0, 1, ..., h}
and{—k,—k+1,...,—h — 1}, respectively. Assume thitandr, are index tuples with
elements from{0, 1, ..., h—1} such thatl,, q, r,) satisfies the SIP. Similarly, I&t, and
r,, be index tuples with elements frop-k, —k + 1, ..., —h — 2} such tha(l,,,, m,r,,)
satisfies the SIP. Then, the pencil

L(A) = AMy, My, My My My, — My, My MMy, My,

is aFiedler pencil with repetition (FPRassociated withP(\).

Remark 1: The constraintdy and A being nonsingular can be relaxed. We nelgdo
be nonsingular only if 0 is an index Iy, or r,, or both. Similarly withA;, and the index
—kinl,, andr,,.

Notice that ifl,, ry, 1,,, andr,, are all the empty index tuple in Definition 2.17, then
L(\) is a GF pencil (actually, a PGF pencil). Note also that noG&llpencils are FPR.
We have the analogue of Theorem 2.16 for FPR.

Theorem 2.18: [24] Let P(\) be ann x n matrix polynomial. Then every FPR B \)
is a strong linearization oP(\).

The requirement thatl,, q,r,) and(l,,, m,r,,) satisfy the SIP in Definition 2.17 is
introduced in order to keep the product of the matrices defining.(\) operation free
[24]. As a consequence, the coefficientsIgf\) are block-partitioned matrices, whose
n x n blocks are of the forn), +17, or +A; (that is, no products ofi; blocks appear).
This requirement imposes some constraints on the indicég of, 1,, andr,, that we
analyze next. In particular, we focus @p andr,, because they are the only relevant
tuples in the construction of the right eigenvectors andinmah bases (as we will see in
Section 4.3).
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Lemma 2.19: Leth be a nonnegative integer argbe a permutation of0, 1,..., A}
in column standard form. Let, = (s1,...,s,) be such thatq,r,) satisfies the SIP,
wheres; is theith index ofr,. Then, for eachi = 1,..,r, there exists a stringa : b)
inesf(q,s1,...,si—1) such thate <s; < b.

Proof: Letl < i < r. Since(q, s1, ..., s;—1) Satisfies the SIP, by Lemma 2.9, it is equiv-
alent to a tuple in column standard form. On the other handhawe(q, s1, ..., s;) ~

(esf(q,s1,---,8i-1),si). Now, notice thatesf(q,s1,...,s;—1) contains all indices in
{0,1,...,h} and, in particulars;. The result follows from the fact thdty, r,) satisfies
the SIP. O

Lemma 2.19 motivates the following definition.

Definition 2.20: (Type 1 indices relative to a simple index tuple). kdie a nonnegative
integer andg be a permutation of0,1,...,h}. Let s be an index in{0,1,...,h — 1}.
Thens is said to be aight index of type 1 relative tq if there is a stringt;_1 + 1 : t4)
inecsf(q) suchthats = t4_1 + 1 < t4.

We have the analogues of Lemma 2.19 and Definition 2.20 fdesupf negative in-
tegers. They follow directly from the fact that, i is a permutation of —h, —h +
1,...,—1}, thenq is in column standard form if and only if+ ¢’ is in column standard
form.

The following definition allows us to associate a simple éujl the tuple obtained by
adding a typd index to a given permutation.

Definition 2.21: (Associated simple tuple) Létbe a nonnegative integer agqdbe a per-
mutation of{0,1,...,h}. Letesf(q) = (bat1,ba,-..,b1), whereb; = (t;_1 + 1 : t;),

i = 1,...,a+ 1, are the strings otsf(q). We say that thesimple tuple associated
with q is e¢sf(q) and denote it bys(q). If s is an index of type 1 with respect tg say
s =tq_1 + 1 < tg, then thesimple tuple associated witlay, s) is the simple tuple:

L4 5((17 S) = <ba+17 bOlJ s 7bd+17 Bda Bd—h bd—27 s 7bl> ) where

Bd = (td—l +2: td) and Bd—l = (td_Q +1:t3-1+ 1)

if 5 0.
o 5(q.0) := (baﬂ,ba, o ,bl,bo) , where

Bl = (1 : tl) and Bo = (O)

Definition 2.21 can be extended to the case where we adjoladumntaining more
than one index. This is done in Definition 2.22, which is ke{ireorem 3.6.

Definition 2.22: (Index tuple of type 1) Lehk be a nonnegative integey,be a permuta-
tion of {0,1,..., A}, andr, andl, be tuples with indices from0, 1, ..., ~ — 1}, possibly
with repetitions. We say that, = (s1, ..., s, ), wheres; is theith index ofr,, is anindex
tuple of type Telative toq if, for i = 1,...,r, s; is a right index of type 1 with respect to
5(q7 (317 ey 82'—1))! Whereﬁ(qv (817 sy Si—l)) = 5(5((17 (817 ey 82'—2))7 Si—l) fori > 2.
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2.4. Eigenvaluesand eigenvectors, minimal indices and minimal bases.

The right and lefeigenspacesf ann x n regular matrix polynomiaP(\) at A\ € C are
the right and left null spaces @t(\), i.e.,

N (P(No)) := {xz € C" : P(M\g)z =0},
Ne(P(Xo)) == {y € C" : P(\)Ty =0} .

If P()\) is a regular matrix polynomial andy,.(P(\o)) (or, equivalentlyNy(P(\g)))
is nontrivial, then)\ is said to be afinite) eigenvalugand a vector: # 0 (respectively,
y # 0) In NV.(P(\o)) (respNy(P(\g))) is aright (resp.left) eigenvector of” associated
with \g. Matrix polynomials may also have infinite eigenvalueshis tvork we will focus
on finite eigenvalues. Infinite eigenvalues are considerdy io Appendix B, because
the techniques used for this case are completely diffethatgh simpler) than the ones
employed for finite eigenvalues.

In the case o () being a square singularx n matrix polynomial, the previous notion
of eigenvalue (and eigenvector) makes no sense, becausthigitefinition all complex
values would be eigenvalues £f\). In this case we are interested in minimal bases of
P()) instead of eigenvectors. This notion is related to figat andleft nullspacesof
P()), which are, respectively, the following subspace€oX)",

N (P) := {z(A) e CN)" : P(N)z(\) =0},
No(P) = {y(x) € C()" : PO)Ty(A) =0},

whereC ()™ is the vector space of dimensiarwith coordinates in the the fiel@(\) of
rational functions in\ with complex coefficients. Aolynomial basif a vector space
overC()) is a basis consisting of polynomial vectors (that is, vestehose coordinates
are polynomials in\). The order of a polynomial basis is the sum of the degrees of its
vectors. Here thelegreeof a polynomial vector is the maximum degree of its compo-
nents. Aright (respectivelyleft) minimal basis ofP(\) is a polynomial basis ol,.(P)
(resp.N¢(P)) such that the order is minimal among all polynomial bases,dfP) (resp.
Ne(P)) [11].

Eigenvectors and minimal bases are the central object®ptper, as we see in Section
3.

In the following, when referring to eigenvectors of matriglynomials (or their lin-
earizations), we will assume that the polynomial is reg@ad when referring to minimal
bases, we assume it to be singular.

3. Main results

By Theorems 2.16 and 2.18, all pencils within the familiessidered in Section 2.3 are
(strong) linearizations. Our goal is to derive formulas ttoe left and right eigenvectors
and the left and right minimal bases of these linearizatibngarticular, we want to relate
the left and right eigenvectors and the left and right midib@ses of these linearizations
with the ones of the polynomidt(\). Lemma 5.3 in [8] shows how to do this for Fiedler
pencils. By using suitable strict equivalence relationsvieen GF, FPR and appropriate
Fiedler pencils, we obtain formulas for GF pencils and FPseaisted with type 1 tuples
as well. These formulas are given in Sections 3.1, 3.2 and\3.®e will see, the presence
of an identity block within these formulas allow us to rewetise process and recover the
eigenvectors and minimal basesPf)\) from the eigenvectors and minimal bases of the
linearizations, as it was done in [5] for the GF pencils, anf8i for Fiedler pencils. The
proofs of all these formulas are addressed in Section 4.
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From now on, when considering an ordered tuplaith ¢ entries, we will follow
the convention of assigning the positiorto the first entry in the tuple. Also, for each
0 < i < ¢, z(¢) will denote the number occupying thth position inz and, for each
j € z,z1(j) denotes the position gfin z (starting with0). In other words, we see an in-
dex tuplez with ¢ elementsy, . .., js, as a bijectiorz : {0,1,...,0—1} — {j1,...,7¢}
We will also associate tuples of blocks to tuples of numbEngn, according to the pre-
vious convention, when referring to “the position of a blbale understand that we start
counting in0 (the Oth position)

3.1. Eigenvectorsand minimal bases of Fiedler pencils
The following theorem is a restatement of Lemma 5.3 in [8].

Theorem 3.1: Let P(\) be ann x n matrix polynomial of degree kP, be itsith
Horner shift, fori = 0, ..., k, andq be a permutation of0, 1, ...,k — 1} withcsf(q) =
(ba, ba—1,--- ,bl), Wherebj = (tj—l +1: tj), forj=1,...,a. Leth()\) =AM_j —
M, be the Fiedler pencil oP(\) associated witly. Let

Ra(P,A):=[Bo B ... Bp1]", 8)

where, ifq(i) € bj, forsomej = 1,..., a, then

B — N7, i i=k—t; -1,
"7\ M~LP;, otherwise

(9)

LetLq(P, ) := Rievq(PT, ). Then

(@ {vi(A),...,vp(A)} is a right minimal basis of P(\) if and only if
{Rq(P, ) v1(N), ..., Rq(P, N)vp(A)} is a right minimal basis o (\).

(b) v is a right eigenvector of,(\) associated with the eigenvalug if and only ifv =
Rq(P, Xo)z, Wherez is a right eigenvector o (\) associated with\,.

€) {wi(N),...,wp(N)} is a left minimal basis of P(\) if and only if
{Lq(P,N)wi(N), ..., Lgq(P, Nwp(N)} is aleft minimal basis of (\).

(d) wis a left eigenvector of 4 (\) associated with the eigenvalug if and only ifw =
Lq(P, Xo)y, Wherey is a left eigenvector aP(\) associated with\.

Moreover, ifq hascy consecutions at 0, then tlig — ¢ )th block ofR4 (P, M) is equal to
I,,, and ifq hasiy inversions ab, then the(k — ip)th block of L, (P, A) is equal tor,,.

Remark 1: We wantto stress that— ¢; — 1 in (9) is the position ircs f (q), (counting
from left to right and starting witld) of the smallest index irb; (that is,q ' (¢;—; +
1) = k —t; — 1). Thus, we may se®q(P, \) as partitioned intax strings of blocks,
each one corresponding to a stribgin csf(q). More precisely, the string iRq (P, \)
associated witth; is of the formAi =1 [T Py 1¢p, 19y - Py1(s,y]°- HenceRq (P, \)
can be easily obtained from f(q).

Remark 2: There is a duality between the formulas ®g and £, given in Theorem
3.1. More precisely, if théth block, B;, of R in (8), withi # 0, is of the form\ 1P,
then theith block, B, of L is \*=U+9)T and, similarly, if theith block of £ is N~ P,
with i # 0, then theith block of R is \*~U+) 1. Notice, finally, thatB, = A>T and
By =X "1, witha + 3=k + 1.

Example 3.2 Let k = 13 andq = (10 : 12,9,8,6 : 7,5,2 : 4,0 : 1). Note thatq
contains seven strings. Each string induces a string ofkblat R, corresponding to
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Fyq(M\) = AM_j, — Mg. The first entries of these strings correspond to the positl 3,
4,5,7,8and 11, respectively. Th@&, is

Ry = [AST APy AP NTIMIINST XPs|A2IIAT APy APio|T Pr2]”.

For the left eigenvectors and minimal bases, we haydrevq) = (12,11,7 : 10,4 :
6,3,1:2,0), so

Lo = [MIPNINT NPT NPL MPINT A3PE NPT |N2I|AL APE|T]E.

3.2. Eigenvectors and minimal bases of GF pencils

In this section we present an explicit relationship betwle&rand right eigenvectors and
minimal bases of GF pencils and left and right eigenvectodsrainimal bases oP ().
Here we only address the case of PGF pencils and we postpépmtndix A the case
of non-proper GF pencils since these pencils do not seem tel&eant in applications
(exceptin the particular case of the symmetric linearnizetiof even-degree regular matrix
polynomials in [3]) and the study of eigenvectors and midib@ses in this case requires
techniques other than those used in the PGF case. It showdarizeked that index tuples
q andm in Definition 2.15 are both permutations and, so, they arévatgnt to tuples in
column standard form.

Theorem 3.3: LetP()\) be ann x n matrix polynomial with degrek and letK (\) =
A My, — My be a PGF pencil oP(\). LetP;, fori = 0,1,. .., k, be theith Horner shift
of P. Assume thain hasc_j; consecutions at-k, andcsf(m) = (my, —k : —k + c_).
Setz := csf(—revmy,q) = (ba,ba-1,...,b1), and letRx (P, \) be the following
nk x n matrix polynomial:

(i) If cp =0, thenRi (P, \) := R(P,\), withR,(P, \) asin(8).
(i) If c_x >0, then

Ri(P,A) i= [A*[Py Pi... P, 1]|Be, Be yi1 .- Bia]®, (10)

where, ifz(i) € bj, forsomej = 1,2,. .., «, then the block3; ;. , is as in(9).

Finally, setLx (P, )\) := Ry:(PT,\), where K*(\) = MMy m(PT) — Moy o(PT).
Then:

(@ {vi(A),...,v(N)} is a right minimal basis of P(\) if and only if
{RK(P,N)v1(A),...,Ri(P,A\)vy(X)} is aright minimal basis of< ().

(b) v is a right eigenvector ok (\) associated with the eigenvalug if and only ifv =
Rx (P, Xo)z, wherez is a right eigenvector oP (\) associated with\,.

(€) {wi(N),...,wp(N)} is a left minimal basis of P(\) if and only if
{Lg(P,\)wi(N),...,Lx(P,A)wy(N)} is a left minimal basis of<(\).

(d) w is a left eigenvector o (\) associated with the eigenvalug if and only ifw =
Lx (P, o)y, wherey is a left eigenvector aP(\) associated with\,.

Moreover, ifq hascy consecutions al, then the § — ¢)th block ofR i (P, \) is equal to
I,,, and ifq hasiy inversions ab, then the(k — ip)th block of Lk (P, ) is equal tol,,.

Remark 3: Notice that theB; blocks in (10) follow the same rule as in (9). More
precisely, theth block B; is of the form\ =11 if z(i — c_y,) is the first element ib;, and
it is of the formM\ =1 P, if z(i — ¢_;) € b; butis not the first element db;.
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In the following, for simplicity and when there is no risk afrcfusion, we will drop the
dependence off and\ in R (P, A) andLg (P, \).

Example 3.4 Letk = 12, m = (-4 : —3,—6,—12 : —10) andq = (7 : 9,5,0 : 2).
Then,c_; = 2. Note thatz = csf(—revm;,q) = (6 : 9,3 : 5,0 : 2), soa = 3.
Also, csf(revm) = (—3,—4,-6,—10,—11,—-12) = (m),—12), andesf(revq) =
(9,8,7,5,2,1,0). Then,z’ = csf(—revm),revq) = (11,10,9,8,6 : 7,4 : 5,3,2,1,0),
soa = 10 in this case. IfK (\) = AMy, — My, Theorem 3.3 gives

Ric = [ APy N3PIA2T 2Py A2Py A2 Ps| AT AP; ABs|I Pig Piy |°

I

and
L= [A9I|)\8I|)\7I|A6I|A5I )\5P5T|>\4I )\4P7T|A3I|A2I|)\I|I]B.

Example 3.5Letk = 12, m = (—12 : —8), andq = (6 : 7,5,4,0 : 3). In this
case,c_, = 4, —m; is the empty tuple, and = q. Therefore,a = 4. Similarly,
revm = (—8,-9,-10,—11,—12) = (m), —12), which is already in column standard
form,revq = (3,2,1,0,4 : 5,7,6), s0z’ = csf(—revm]),revq) = (11,10,9,8,7,3 :
6,2,1,0), anda = 9 in this case. Then, ik (\) = AM,, — My, Theorem 3.3 gives

Ric = [NPy NPy APy AP NT NP5 NI Py Prg Pri]°,
and

Lrc = [NINIPEIN TN TN T X P A3 PE X PIN2IA|T)E.

3.3. Eigenvectors and minimal bases of FPR

We provide in this section formulas for the right (respeslipyleft) eigenvectors and min-
imal bases of FPR with,,, andr, (resp.rev 1,,, andrev 1;) in Definition 2.17 being type 1
tuples relative tan andq (resp.rev m andrev q). This case seems to be the most relevant
for applications. For example, all symmetric and palindiofamilies of linearizations
considered in [6, 24] correspond to this case. Howeveretheg examples of symmetric
FPR linearizations in which the previous tuples are not pét¥ [4].

The families of symmetric linearizations in [24] are addex$in Section 4.3.1. To de-
rive appropriate formulas for the eigenvectors and minipaasles of FPR when the tuples
are not of type 1 seems to be quite involved and remains anmpéfem.

Theorem 3.6: Let P(\) be a matrix polynomial of degreé and let L(\) =
AM,y, My, My My, My, — My, My, My M, M, beaFPR.

(a) Assume that,, andr, are type 1 tuples relative tm andq, respectively. Lef(q, r,)

ands(m, r,,) be the simple tuple associated wfip r,) and(m, r,, ), respectively. Set
RL(P,A) == Rz(P,\), whereK (A) = AM(m.r..) — My(qr,) iS @ GF pencil. Then
(@1) {vi(A),...,v(N)} is a right minimal basis of P(\) if and only if
{RL(P,N)vi(N),...,RL(P,\)vp(N)} is aright minimal basis oL(\).
(a2) v is a right eigenvector of.(\) associated with the eigenvalug if and only if
v =Rr(P, \o)z, Wherez is a right eigenvector o (\) associated with\.
Moreover, ifs(q, r,) hascy consecutions &, then thék — ¢)th block of R, is equal
to I,,.

(b) Assume thatevl,, andrevl, are type 1 tuples relative teev m andrev q, respec-

tively. Lets(revq,revl,) and s(revm,revl,,) be the simple tuple associated with
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(revq,revly) and (revm,revly,,), respectively. SeL (P, \) := Rz (P, \), where
I?(A) = >‘Ms(rcv m,rcvlm)(PT) - Ms(rov q,rev lq)(PT) is a GF pencil. Then
(b1) {wi(A),...,wp(N)} is a left minimal basis of P(\) if and only if
{LL(P,\)wi(N),...,LL(P,Nwy(\)} is aleft minimal basis of.(\).
(b2) w is a left eigenvector of.(\) associated with the eigenvalug if and only ifw =
L1, (P, X\o)y, Wherey is a left eigenvector aP(\) associated with\.
Moreover, ifs(rev q,rev r,;) hasc, consecutions &, then thék — ¢,)th block of £,
is equal tol,,.

Example 3.7 Let L(\) = AM,,, My My My, M,,, — My, My MyM, M., be the FPR
associated with a matrix polynomial of degiee- 12, withq = (6,1 : 5,0),r, = (1 : 4),

m = (—7,-8,-12: —9), r,, = (=12 : —10,-12 : —11),1, = (0),L,, = (-8, —9).

Then,(q,ry) = (6,1 : 5,0 : 4) ands(q,ry) = (6,5,0 : 4). Similarly, (m,r,,) =

(=7,-8,—12 : —=9,—12 : —10,—12 : —11) ands(m,r,,) = (=7, -8, -9, —10, —12 :

—11), soc_, = 1. Also, (revq,revl],) ~ (5 : 6,4,3,2,0 : 1,0), s(revq,revl],) =

(5 : 6,4,3,2,1,0), (revm,revl,) ~ (-9 : —-7,-10,—11,—-12,-9 : —8), and
s(revm,revly,) = (—7,-10 : —=8,—11,-12), s0t_j, = 0. Let K(\) = AMy(myr,) —

Mq,r,)» and IA((A) = AMtevmprevl,) — Msgevqrevl,)- FoOllowing the notation in
the statement of Theorem 3.3, we hawg = (-7,—8,—-9,—10) and thenz =

(10,9,8,7,6,5,0 : 4). Similarly, m; = (—7,10 : —8,—11) andz = (11,8 : 10,7,5 :

6,4,3,2,1,0). Hence

Ri = [ATPo|NCI|ASTINT|N3I|NT|XI|I Ps Py Pig Py |
and

Ly = [NINTT NPT ATPT|ASTINT A BT AN TN IAI|T ]

3.4. Application: conditioning of eigenvalues

Although all linearizations of a given matrix polynomi&(\) have the same eigenvalues
as P(\), the presence of rounding errors may produce quite differesults when the
eigenvalues are computed using different linearizationdsvahen computing the eigen-
values directly from the polynomial. The notionscainditioningandbackward errof22]
measure the effect of rounding errors in the final (compugedhtities. In particular, con-
dition numbers measure how perturbations in the data dffedtnal result. In th@-norm,
the (normwise) condition number of the simple eigenvalyef the matrix polynomial
(1) is given by

(50 ol 145112) ylllizle
[Aolly* P’ (Ao)z| ’

kp(Xo) =

wherey andx are, respectively, a left and a right eigenvector assatiatth A\, and P’
denotes the derivative @t with respect to the variable[22]. Similarly, when considering
a linearizationd (\) = AX + Y of P(\), we have

Poll[XTl2 + [[Y]l2) lwll2]lv]l2

_J
“n00 = T e B O]

where noww andv denote a left and a right eigenvectorifassociated with. It can
be seen thay* P’ (\g)z = w*H'(\g)v [14, Lemma 3.2]. Hence, the ratio between the
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condition number ol as an eigenvalue of the linearization and the condition rermb
Ao as an eigenvalue of the matrix polynomial is equal to

£ (M) (Aol Xz + [[Y]l2)  [lwl2l[v]l2

rp(Ao) (Z?:O‘)‘O‘j”Aj”z) lyll2llz]l2

As a consequence, the ratio between the norm of eigenvedtofis||v||2) / (llyll2]lz]2)
plays a relevant role in comparing the conditioning\@in H with the conditioning of\y
in P. To measure this ratio, our formulas relating the eigerorsatf linearizations with
the eigenvectors of the matrix polynomial may be useful.

4. Proof of the main results

In the following subsections we will prove Theorems 3.1,&18 3.6. We will only prove
the part regarding the right eigenvectors and minimal baBes statements about the
left eigenvectors can be obtained from the right ones bygusia following observation.
Given a index tuple, let M (P) be the matrix in (7). LefH (\) = AMa(P) — Myp(P),
wherea andb are index tuples satisfying the SIP with indices (maybe wagbetitions)
from {0,1,...,k,—0,—1,—2,...,—k} (notice that this includes all three families of
Fiedler pencils, GF pencils and FPR). TH8A)T = AM, ¢y o(PT) — Moy b(PT). Since
the left eigenvectors and left minimal basesfbf)) are the right eigenvectors and right
minimal bases off (\)7, we can get formulas for the left eigenvectors and minimaksa
by reversing the tuples of the coefficient matriced&(f\) and replacing the coefficients
A; by AT in the formulas for the right eigenvectors and right minimases.

4.1. Thecase of Fiedler pencils

Theorem 3.1 follows almost immediately from Lemma 5.3 in {&here the authors derive
formulas for the last block-column df (\) and the last block-row o/ () in (2) with
H()\) being a Fiedler pencil. Our proof of Theorem 3.1 consistset#ting our formulas
(8) and (9) with the ones obtained in [8].

Proof of Theorem 3.TFirst, let us recall the notion dfonsecution Inversion Structure
Sequence (CIS®f a permutatiory of {0, 1, ...,k — 1}, introduced in [8, Def. 3.3]. As-
sume thaig hasc; consecutions &, i; inversions at;, ¢, consecutions at; + i1, is
inversions at; + i1 + ¢o, and so on. Then,

C'ISS(q) = (Cl,il,CQ,iQ, . ,Cg,ig).

Notice thatc; andi, in this list may be zero, but the remaining numbers are nanzer
Using this notation, and following Rematkwe may write

Ra=[ZeCo...T1 C1]",
where, forj = 1,... ¢,
A=l B 7 18
1; = A ,\E[ and C; = ittt =1 ot )

I P,
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(we setip := 0) and
Oé?:k‘—(61—|—le—|—---—|—Cj_1—|—ij_1—|—6j)—|—’i—1, for ’izl,...,Cj.

These are precisely the formulas (5.3) in [8], which are thiédimg blocks of formula
(5.4) (also in [8]), which generates the right eigenvectord minimal bases of the Fiedler
pencil Fy. The fact thatR, contains an identity block follows immediately from this
formula. O

4.2. Thecase of PGF pencils

To prove Theorem 3.3 we use the following elementary obsiervalLet B be a block-
column matrix consisting ok square blocks of siza. WhenB is multiplied on the
left by M;._1, only the first and second blocks & are modified. When multiplied by
Mo M1 only the first, second, and third blocksBfare modified. Thus, when multi-
plying M _;.;.—1)B the only blocks ofB that can be altered are the blocks with indices
from1ltoj + 1.

Proof of Theorem 3.3Let K(\) = AM,, — My be a PGF pencil associated with a
matrix polynomialP()\) and such thain andq are index tuples in column standard form.
We only prove (b), since (a) can be obtained using similau@ents. We construct a right
eigenvector of<' (\) from strict equivalence with a Fiedler pencil and show thét strict
equivalence preserves an identity block in the formulasl#zal to the eigenvectors of the
Fiedler pencil, proving the last part of the statement.

Let us assume thah hasc_; consecutions atk. Then, there exists an index tupie,
such that

K(\) = /\MmlM(—k:—k-i—c,k) — Mq. (11)

Notice that the index tuple-rev my, q) is a permutation of0,1,...,k —c_; — 1}. Let
z =csf(—revmy,q) = (by,ba—1,...,b1)andz = csf(—revmy,q,k —c_p : k—1).
We construct the following Fiedler pencil associated with\):

Fi(/\) =M _rev 11’11K(>\)M(k—c,k:k—1) =AM _j — M(—rev mi,q,k—c_p:k—1) > (12)

whereM;_._,.x—1) = I if c_ = 0. We know that there exist unimodular matridég\)
andV () such that

which can be rewritten as
UNM KM\ (M V(A) = L0
( ( ) _rcvml) ( )( (k—c_r:k—1) ( )) OP()\) :

Note that K(A\)v(\) = 0 if and only if v(\) = Mgy_. ,.x—1)Rzz(A), for
somex(A) with P(A\)z(\) = 0, where M;,_. ,.,—1)Rz is the last block-column of
M—c_,:k—1)V (A). Recall that the explicit expression f&; is given in Theorem 3.1.
Thus, ifc_; = 0, thenRx = Rz = R, and this proves pafi) in the statement.

Now assume that_;, # 0. Letb, = (w : k —¢c_; — 1), for somew > 0. Thenz is
equivalenttdw : k — 1,bs—1,...,b;). By Theorem 3.1,
]B

Rz = [ Pr... Pooi—w]|Bo—w Br—wt1 - Br—1]", (13)
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whereB;, fori = k —w, ...,k — 1, are as in the statement. Now, multiplyi; on the

left by M;,_._,.x—1) only affects the first_; + 1 blocks of Rz. Since(w : k—1) contains

at least_; + 1 elements, only some of the firBt— w blocks in (13) will be modified.
Itis easy to check by direct multiplication thaf, . ,.,—1)Rz is equal to

[X*[Py Py ... P, ] A NI P iy Pooyw) Biow - Be1]°

and this provefii).

Finally, for the claim on the identity block, we first assurhattk — ¢_; # ¢o + 1,
and thencyg +1 € my or¢g + 1 € q. This implies thats > 2. From Theorem 3.1,
the (k — ¢o)th block of Rz (given by (13)) is equal td,, and, since multiplying on the
left by M _._,.x—1) does not affect this block, the identity block remainsz. If
k —c¢_; = cg + 1, thens = 1 and, by the previous argumeni@yx = [B; By]®, where
the first block of ofB; is equal tol,,. This is, precisely, thék — ¢y)th block of Ri. O

4.3. Thecaseof FPR

Proof of Theorem 3.6We first notice that, from the conditions in the statementhef t
theorem, we get

(a,rg) ~ (rg,5(q,rg))  and  (m,rpy) ~ (v, s(m, ry)). (14)

We may prove (14) inductively on the number of indicesrgfandr,,. Let us focus,
for instance, on the first identity (for the second one we carcged in a similar way).
Let us assume that, = (si, ..., s,), wheres; denotes theth index inr,, and seig =
(ba,ba-1,...,b1), with b; = (t,_; + 1,¢;), fori = 1,..., . Sincer, is of type 1
relative toq, we haves; = t;_1 + 1 < tg4, for somel < d < «. Hence(q, s1) ~
(ta—1+1,ba,. .., bay1,tg1+2:t3,bg1,t4-1+1,...,b1) = (rq,5(q, 1)), if d > 1,
and(q,s1) ~ (0,bg,...,ba,1 : £1,0) = (rq,s(q,s1)), if d = 1. We can proceed
recursively to prove the claim.

Now, let L(A) = AMy, My, My My, My, — My, My, MM, M., as in the statement.
Here we assume that, (resp.Ay) is nonsingular if0 (resp.—k) is an index inly, r,, or
both (resp. in,,, r,,, or both). Notice that, by definition of FPR/,, commutes with
Mgy andM,, and My, commutes with\/,. . This fact, together with (14) gives

L()‘) = )‘MlliqumquMs(m,rm) - MlliqumquMs(q,iq)
= Mlliqumqu (/\Ms(mmm) — Ms(qmq)) = MlliqumquK(/\).

Now the result follows, since multiplication on the left bgmsingular matrices do not
change the eigenvectors and the minimal bases. O

Example 4.1 Let L(\) = AM,, My My M., — M, My, MqM,, be the FPR of a ma-
trix polynomial P(\) of degreek = 15 withq = (8,4 : 7,0 : 3), m = (—11 :
-9,-12,—-15 : —13), andr, = (4 : 6), r,, = (. Then, the simple tuple associ-
ated with(q,r,) isq = (8,7,0 : 6). Following the notation in Theorem 3.6, we have
K(X\) = AMy — Mg. In this case(—revm;,q) = (12,9 :11,8,7,0 : 6), thus
Ry =[NPy N PUMI|NT APy A3P5|NI|AI|T Py Pig Piy Pis Pig Pia”

Now setr, = ), r,, = (—15 : —14). Then, the simple tuple associated w{t, r,, )

ism = (—11: —9,—-12,—-13,—15 : —14). We now haveK'(\) = AMz — M. In this
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case(—revmy,q) = (13,12,9:11,8,4: 7,0 : 3), thus

R = [ASPo|NTIAI|NST X3Py A3 Ps|N2T|AT APy APy APio|I Pra Piz Pis]°.
Example 4.2 Let K(\) = AM_sM_4M_sM_gsM_7M_¢ — MsMyM; be the PGF pen-

cil associated with a matrix polynomid@t(\) with degreek = 8. We havem = (-5 :
—3,—8: —6) andq = (2,0 : 1) in column standard form. By direct computation we get

[—7 0 Mg 0 0 0 0 0

M —ITXA; 0 0 0 0 0

0 -1 0 0 hVi 0 0

- MMg—-I 0 Xs 0 0
K@) = 0 M-I Xy 0 0

0 0 A s+ Ay Ay —1
000 I MO
0 0 0 0  AgA|

OO OO OO
OO OO

and, from Theorem 3.3,

Ric = [ A3 As PN A2Py NPy AT P )P,
It is straightforward to see thdf (\)Rx = [0000000 P(A)]B, SOK(MRg(N)z =
0 if and only if P(A\)z = 0. Now, setr,, = (=5 : —4) andr, = (0). We have that both

(m,r,,) and(q, r,) satisfy the SIP and also that bath andr, are of type 1 relative to
m andq, respectively. Moreover, a simple computation gives
Ri = Moyov e, M_rove, Ric = [ A3Ag X3Py X3Py NP5 N2I|AI|T — A5 P; )P

It is also immediate to see that the FPR defined.@5) := K (\) M., M, is

-0 0 0 AAg 0 0 0

M-I 0 0 A7 0 0 0

0 00 O —1I A 0 O
L) = 0 M —1 0 Mg—As AAs 0 0

0 0 M —TXAs—Ay  MNAy 0 0 ’

0 0 0 A XAy MNs3+A4A2A A

0 00 O 0 —I X 0

0 00 O 0 0 Ao =4y

and thatL(\)Rz, = [0000000 P(A)]°, soL(A\)Rpz = 0if and only if P(A\)z = 0.
However, Theorem 3.6 gives the following:

R i= [N Ag NPy APy NPy NTN2I|AI|T]®

which corresponds to the PGF penii’l()\) = AMym,r,.) — Ms(q,r,)» Wheres(m,r,,) =
(—3,—-8 : —4) ands(q,r,) = (2,1,0) are the simple tuples associated w(ii, r,,)
and (q,r,), in column standard form. It is straightforward to checktthi@\)R z =
(00000 P(A) 00]°, sOL(\)Rzz = 0if and only if P(A)z = 0.

The case of indices which are not of type 1 will not be addrssthis work. When the
column standard form of botiy,, andr, contains at most one index not being of type 1,
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we may determine the blocks M _ ¢, r, M_.cvr,, Ric Dy direct multiplication. However,

if there is more than one indexin, orr, not being of type 1, then the problem of keeping
track of the blocks which are moved after successive midétibns by the corresponding
M; matrices becomes an involved task, and remains as an oplleim.o

4.3.1. Symmetric pencils with repetition

Although a full characterization of all symmetric FPR hagmeecently presented in
[4], here we focus on two subfamilies introduced in earkderences because they involve
type 1 tuples and allows us to exemplify our results in thisgra

Let us begin with the symmetric linearizations considengd v] and [18], and recently
analyzed in [24] in the context of Fiedler pencils. Thesedinzations are FPR. In par-
ticular, for a given0 < h < k — 1, we sethvh(A) = AMm My, M, — MqM, M, ,
withqgq=(0:h),m=(-k:—-h—-1),r,=(0:h—-1,0: h—2,...,0:1,0), and
rm=(-k:—-h—-2,—k:—h—-3,...,—k:—k+1,—k) (see [24, Cor. 2]). Notice that,
with the notation introduced in Section 2.3, we haye- 1,,, = () for all these pencils.

Notice that bothr, andr,, are of type 1 relative teg andm, respectively. Moreover,
with the notation of Theorem 3.6, we havgy,r,) = (h,h — 1,h —2,...,1,0) and
s(m,r,,) =(-h—1,—-h —2,...,—k). Therefore,

Rys = [M=ITN6=21 \k=31 AT T]"

Eho

Note that this expression does not depend oBy the symmetry of the construction, this
is also equal taC s . As an example of these pencils, let us consider the kasel and

h = 2. We have

L3 5(A) = AM(_g._5)M(0:1,0)M(_1) — M(g.2) M 9:1,0)M(_s)

—Ay  MAy 0 0
| Ay Nz + Ay Aq Ap
o 0 Aq —AA1 + Ag —M\Ap

0 Ag —AAg 0

Notice thatL§,R,s, = [0 P()) 00]”, and that(L{,) R s, = [0 P()T 00]°, so
Rps,x = 0ifand only iof P(A)z = 0.

We want to emphasize that, as mentioned in [24, p. 336], theipeL,fh()\) are a basis
for the vector spacBL(P) introduced in [19]. This is an immediate éonsequence of the
following three facts:

(i) Every Ly ,()) belongs taDL(P) [18, p. 225].

(i) The dimension of the vector space spannedllﬁx(k), e ,Lka_l(/\) is k (provided
that A # 0) [18, Lemma 10].

(i) The dimension of the vector spa@&.(P) is k [19, Cor. 5.4].

Next we consider a recent construction of symmetric liresdidns introduced by Volo-
giannidis and Antoniou in [24, p. 338]. Let< h < k — 1 and consider the cases:

(@) hisodd: Sety = (Qodd; even) ANAM = (Mygq, Meyen ), Whereqeqgg = (1,3,...,h),
Qeven = (0,2,...,h—1),mygqg = (—h—2,—h—4,...),andmeye, = (—h—1,—h—
3,...). Also,1; = geyen, tqg = 0, Ly, = 0, vy, = mygq.

Notice that the column standard form qfandm is (h,h — 2 : h — 1,h — 4 :
h—3,...,1:2,00and(—h—2: —h—1,—h—4: —h —3,...), respectively. Thus,
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r,, is of type 1 relative tan. Moreover, with the notation of Theorem 3.6, we have
s(m,ry,)=(-h—-1,-h—-3:—-h—-2,—-h—-5:—h—4,...,—k) if kis odd, and
s(m,ry,)=(-h—1,-h—3:—-h—2,—h—5:—-h—4,...,—k: —k+1)if kiseven.
Howeverrev 1, is not of type 1 relative toev q. Nonetheless, by the symmetry of the
construction, the same formulas allow us to recover bottaled right eigenvectors and
minimal bases (replacing; by AT).

(b) h is even: Selq = (Qodd; Aeven) ANA M = (Mygg, Meyen ), Where NOWQ,qq =

(1,3,...,h — 1), Qeven = (0,2,...,h), mpygqg = (—h — 1,—h — 3,...), Meyep, =
(—h—2,—h—4,...). Also,1; = 0, vy = dodd, L = Meyen, I =0
As in the previous case, is of type 1 relative tay.
Example 4.3 Let k = 6 andh = 3. Thenq = (Qevens Yodd) = (( ) (0,2)) and
m = (Meyen, Moga) = ((—5), (=4, —6)), ry, = (=5), 1, = (0:2)an =0 =
Then
L(X) = AMo2) M(—5.—4,—6)M—5 — M(0,2)M(3,1:2.0)M—5
0 —I A 0 0 0
—1 Mg — A5 MAj 0 0 0
. by AAs ANA4 + Ag Ay —I 0
o 0 0 Ay Ao+ A1 M A
0 0 —I A 0 0
0 0 0 Ao 0 —AAo |

Notice thatZ () is, indeed, block-symmetric.

The simple tuple associated witln, r,,,) in column standard form is(m,r,,) =
(—4,—6 : —5), and the simple tuple associated w{tp r,) in column standard form is
s(q,ry) = (3,1 : 2,0). Then, following the notation of Theorem 3f,; = (—4) and
z = (4,3,1:2,0) is the tuple in column standard form similar(tem;, s(q,r,)). Hence,
by Theorem 3.6, we have

Rp = [MA NN I AR T]®
It is straightforward to check thak(A\)Rz, = [0000 P()) O]B, SOL(N)Rpz = 0 if
and only if P(A\)x = 0. SinceL(\) is block-symmetric, we have that

Ri(PT) = [MAL|N 1N APT|T]®.

5. Conclusions and future work

We have obtained explicit formulas for the left and rightezigectors and minimal bases
of the following families of linearizations of square matpolynomials: (a) the Fiedler
pencils; (b) the GF pencils; and (c) the FPR with type 1 tupidshave also analyzed two
particular families of symmetric linearizations that bedao the last family. It remains,
as an open problem, to obtain formulas for eigenvectors andamal bases of FPR con-
taining tuples which are not of type 1. Our formulas rela éigenvectors and minimal
bases of these linearizations with the eigenvectors anthmalrbases of the polynomial.
The formulas for the left and right eigenvectors may be udefthe comparison of the
conditioning of eigenvalues of matrix polynomials throdgtearizations. We think that
this is now one of the most challenging questions regardiedPEP solved by lineariza-
tions. There are several previous pioneer works where thdittoning of eigenvalues of
linearizations and the conditioning of eigenvalues of thlypomial have been compared



December 18, 2012

14:18 Linear and Multilinear Algebra Bedo_18 12

20 Maria I. Bueno, Fernando De Teran

[15, 16]. The present paper may be useful for the continnatiothese works. In par-
ticular, to compare the conditioning of eigenvalues in thedfer families (including the
Fiedler pencils, the GF pencils and the FPR) with the comdiitig of eigenvalues in the
matrix polynomial.
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Appendix A. Eigenvectors and minimal bases of GF pencils thaare not proper

TheoremA.l: LetK(\) =AMy — My be a GF pencil of a regular matrix polynomial
P()) of degreék. LetR i (P, \) be the following:k x n matrix polynomial.

(@) Assumd), k € q. Letq’ = q ~ {k} andz = csf(—revm,q’). We distinguish two
cases:
(al) If K — listo the left ofk in (—revm, q), then

Ric(PN) = | 5 |

with R, as in(3.1).
(@2) If k — 1is to the right ofk in (—revm, q), then

Ri(P,)) =R, .

(b) Assume-0,—k € m. Setesf(k+m) = (k—c_o: k, k+m').
(b1) If c_og = k, then

Ric(P,A) i= [A AP, ... AP, A¢]".
(b2) If c_g < k, then
Ri(P,)\) =Rz,
whereK (\) = AMy — Mg, ,)Mq is a PGF pencil.
(c) Assume-0 € m andk € q. Setesf(k+m) = (k—c¢_o: k,k+m') andesf(q) =
(t: k,q’). We distinguish the following two cases:

(cl) Ift >c_g+1,then

R (P,A) =Rz,
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whereK (\) = AM(_._y My — Mo,c_,yMq is a PGF pencil.
(€2) If t =c_o+ 1, then
Ri(P,A) = [A, P ... P,]°

Then

(@ {vi(A),...,vp(A)} is a right minimal basis of P(\) if and only if

{Ri(P,Nvi(N),...,Rr(P,\)vy(A)} is aright minimal basis of,(\).

(b) v is a right eigenvector ok (\) associated with the eigenvalug if and only ifv =

Rx (P, Xo)z, wherez is a right eigenvector oP (\) associated with\,.

Proof: (al) In the conditions of the statement, we have thatv m, q) is equivalent to
(—revm, d’, k), SO K(\) = AMm — My My, and thenF; (\) := M_ ey mK(A\)M_j, =
AM_j — M_,evmMgqy is a Fiedler pencil. Now the claim is a consequence of Theorem
3.1 applied taF,;(A).

(a2) Inthis case we have th@atrev m, q) is equivalenttqk, —revim, q'), SOF,(\) :=
M_ M ey mEK(N) = AM_, — M_,.ymM is also a Fiedler pencil, and the result is
again a consequence of Theorem 3.1 applieB,to\).

(b1) In this case we have

K(\) = AM_;M_jpr - M M_g— 1,

SOK (A My = AM_;M_j4 --- My — My is a PGF pencil, and the result is an immediate
consequence of Theorem 3.3 applied to this pencil.
(b2) Notice that, in this casel(\) = AM_. ._
Mo:c_ K (A) is a PGF pencil, and the result follows.
(cl) Now we haveK(\) = AM(_ . oMw — MupyMy, SO K(\) =
Mo:c_o)M(—1:—¢)K (N) is @a PGF pencil, and the result follows.
(c2) In this case, we hav€ (\) = AM(_._,._0) = M(c_41:k), SOM(g.c_ ) K(AN)M_j, =
C1(A) is the first companion form. Hence, the claim is a consequehiteeorem 3.1

oM — Mg, S0 K(\) =

For the left eigenvectors and minimal bases, similar restdin be stated using the
matrix polynomialP” and reversal of all tuples appearing in Theorem A.1.

Appendix B. The infinite eigenvalue

A matrix polynomialP(\) is said to have aimfinite eigenvalud zero is an eigenvalue of
rev P(\). Moreover, the left and right eigenspaces of the infinitesiglue ofP(\) are
the left and right eigenspaces of the zero eigenvaluewP (1)), respectively.

In this appendix we provide formulas for the left and riglgegivectors associated with
the infinite eigenvalue in the following cases: (a) Fiedlengils; (b) PGF pencils; and (c)
FRP with type 1 tuples. Hence, the results we will state hezecamplementary to the
ones in Theorems 3.1, 3.3 and 3.6, respectively, for fingemialues.

The key to derive formulas for the left and right eigenvestmssociated with the infinite
eigenvalue relies in the following fact: Given a matrix podynial P(\) = Zf:o N A;,
with A, # 0, the vectorv (respectivelyw) is a right (resp. left) eigenvector d?(\)
associated with the infinite eigenvalue if and onlifv = 0 (resp.A{w = 0), that is,
left and right eigenvectors of a matrix polynomial assadawith the infinite eigenvalue
are vectors belonging to the left and right nullspace, retbgdy, of its leading coefficient.
In all three statements below,()) is assumed to be a regular matrix polynomial as in (1),
and the eigenvectors of linearizations are partitionea Artalocks with lengthn.
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Theorem B.1: LetF,(\) be a Fiedler pencil oP(\). Then:

(@) A right eigenvector associated with the infinite eigéngaof P(\) is of the form

[v0...0]% € C"**", wherev # 0 is such that4,v = 0.

(b) A left eigenvector associated with the infinite eigemgadf P()\) is of the form
(w0 ... O]B € C"kxn wherew # 0 is such thatd?w = 0.

Proof: The result is an immediate consequence of the observatitheiparagraph just
before the statement and the fact that the leading coeffioleavery Fiedler pencil is
M_y, = diag (Ag, Lnk-1))- O

Theorem B.2: Let K(\) = AMy, — M be a PGF pencil associated witf(\), and
¢k, i_g be, respectively, the number of consecutions and invessibm at —k.

(i) Letv # 0 be such thatd,v = 0. Then[v; ... v._, v 0... O]B, wherev; = —A;_;v,
fori = 1,...,c_g, is a right eigenvector of{(\) associated with the infinite eigen-
value.

(i) Let w # 0 be such thatdZw = 0. Then [w; ... w;, w0...0]%, wherew; =
—A}f_iw, fori = 1,...,i_g, is a left eigenvector of{(\) associated with the infi-
nite eigenvalue.

Proof: The result for the right eigenvectors is an immediate comsege of the fact
that, if we writem = (—revmy,—k : —k + ¢_;), then Mz = 0 if and only if
M(—k:—k—i—cfk)w =0, and

0 Ay,
I Ag_1
M(—k:—k-i—c,k) =
I Ak—tfk
I I
The result for the left eigenvectors is a consequendd applied tok (1)7. O

Theorem B.3: LetL(\) = AM,, My, My My My, — My, My, MqM, M., be a FPR
of a matrix polynomialP()). Assumer,, ry, rev l,, andrevl, are of type 1 relative to
m, g, revm andrev q, respectively. Let_; be the number of consecutions-of in the

simple tuple associated witlm, r,,,) andi_; be the number of inversions efk in the

simple tuple associated witft,,,, m).

(i) Letwv # 0 be such that,v = 0. Then[v; ... v._, v 0... O]B, wherev; = —A;_;v,
fori =1,...,c_g, isarighteigenvector of (\) associated with the infinite eigenvalue.

(i) Let w # 0 be such thatd]w = 0. Then[w; ... wi_, wO... O]B, wherew; =
—A}f_iw, fori =1,...,i_g, is a left eigenvector of. ()\) associated with the infinite
eigenvalue.

Proof: The proof can be carried out in a similar way as the proof ofofém B.2. O
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