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Abstract. In this paper, we consider shifted tridiagonal matrices. We prove
that the standard algorithm to compute the LU factorization in this situa-
tion is mixed forward-backward stable and, therefore, componentwise forward
stable. Moreover, we give a formula to compute the corresponding condition
number in O(n) flops.
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1. Introduction

Let A be any n-by-n matrix. This matrix is said to have an LU factorization if
there exists a lower triangular matrix L and an upper triangular matrix U such
that A = LU . The LU factorization is one of the more important factorizations
in Matrix Analysis and Numerical Analysis. Traditionally it has been used in
the solution of linear systems of equations. In this situation, the backward error
analysis is what matters. However, lately the LU factorization has been considered
to solve spectral problems related with structured matrices [4, 6]. Here, the goal
is to compute the factors L and U with small forward errors [4]. In order to place
a bound on the forward error it is necessary to combine a backward error analysis
with an appropriate perturbation theory for the LU factorization.
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In this paper we study the LU factorization of shifted tridiagonal matrices.
Consider the n-by-n tridiagonal matrix

J(c, a, b) =


a1 b1 0 · · · 0
c1 a2 b2 · · · 0
0 c2 a3 · · · 0
...

...
...

. . .
...

0 0 · · · cn−1 an

 . (1.1)

In the notation J(c, a, b), the variables c, a, b denote, respectively, the following
vectors

c = [c1, ..., cn−1]T , a = [a1, ..., an]T , b = [b1, ..., bn−1]T .

Let α be a real number such that the shifted matrix J(c, a, b) − αI has a unique
LU factorization. Let J(c, a, b) − αI = LU be the unique LU factorization of
J(c, a, b) − αI, where L is a unit lower triangular matrix. Notice that the factors
L and U are both bidiagonal matrices.

L =


1 0 0 · · · 0
l1 1 0 · · · 0
0 l2 1 · · · 0
...

...
...

. . .
...

0 0 · · · ln−1 1

 , U =



u1 b1 0 · · · 0
0 u2 b2 · · · 0
0 0 u3 · · · 0
...

...
...

. . .
...

0 0 0
. . . un

 . (1.2)

In the sequel, we denote by l and u the vectors [l1, ..., ln−1] and [u1, ..., un],
respectively.

In [2], the stability and sensitivity of the tridiagonal LU factorization without
pivoting was studied. It was proven that the standard algorithm to compute the
LU factorization of a tridiagonal matrix is stable in the mixed forward-backward
sense [5], and also componentwise forward stable, i.e., the forward errors are of
similar magnitude to those produced by a componentwise backward stable method.
Moreover, a formula to compute the condition number associated with the problem
in O(n) flops was presented. Moreover, the same results can proven for the LU
factorization of Hessenberg matrices.

Here we extend the previous results to shifted tridiagonal matrices, namely,
we prove that the LU factorization of shifted tridiagonal matrices is stable and
componentwise forward stable. By performing the subtraction J(c, a, b)−αI before
computing the corresponding LU factorization, we introduce one more arithmetic
operation into the problem. The stability of the problem for shifted tridiagonal
matrices may seem to naturally follow from the stability in the tridiagonal case.
However we have noticed that the stability of the problem for shifted Hessenberg
matrices, for instance, does not correspond to the stability in the Hessenberg case.
Hence, the stability of the standard algorithm for computing the LU factorization
of shifted tridiagonal matrices is worth exploring.
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In this work, we use a different technique from that used in [2] to compute
the condition number associated with the problem. The outputs u and l of the
algorithm are rational functions of the inputs c, a, b and α, and, as a consequence,
u and l are differentiable functions of c, a, b and α whenever the denominators
are not zero. Therefore, the condition number can be expressed in terms of partial
derivatives [3].

The paper is organized as follows: In Section 2, we give the algorithm to
compute the LU factorization of shifted tridiagonal matrices (Algorithm 2.1) and
we present the backward error analysis of this algorithm (Theorem 2.2). We show
that this algorithm is not backward stable but it is stable in the mixed forward-
backward sense (Theorem 2.4). In Section 3, the relative componentwise condition
number of the problem is defined (Definition 3.8). There we give a formula to
compute the condition number in O(n) flops (Theorem 3.7) and we also give a
bound for the forward error in terms of this condition number (Theorem 3.1).
Moreover, we prove that Algorithm 2.1 is componentwise forward stable in two
different ways: 1) considering Theorem 2.2, 2) considering Theorem 2.4.

2. Backward Error Analysis

Let J(c, a, b) be a tridiagonal matrix as in (1.1). Let us assume that α is any real
number such that J(c, a, b)− αI has a unique LU factorization. Next we give the
pseudocode that computes the matrices L and U from the entries of J(c, a, b) and
α.

Algorithm 2.1. Given the tridiagonal matrix J(c, a, b) and the real number α, this
algorithm computes the unique LU factorization of J(c, a, b)− αI.
u1 = a1 − α;
for i = 1 : n− 1

li = ci/ui;
ui+1 = ai+1 − li ∗ bi − α;

end

The computational cost of Algorithm 2.1 is 4n− 3 flops.
In this section we present the backward error analysis of Algorithm 2.1. It

has been done using the standard model of floating point arithmetic [5]:

fl(x op y) = (x op y)(1 + δ) =
x op y

1 + η
, |δ|, |η| ≤ ε,

where x and y are floating point numbers, op = +,−, ∗, /, and ε is the unit roundoff
of the machine. From now on, given a vector v, |v| denotes the vector whose entries
are the absolute values of the entries of v.

We develop our error analysis in the most general setting. For this purpose,
we assume that the shift α is a real number, and we denote by α̂, the near-
est floating point number to α. Moreover, we assume that the input parameters
a1, ..., an, b1, ..., bn−1 and c1, ..., cn−1, are respectively affected by small relative
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errors (1+ εa1), ..., (1+ εan
), (1+ εb1), ..., (1+ εbn−1), (1+ εc1), ..., (1+ εcn−1), where

max1≤i≤n−1{|εai |, |εan |, |εbi |, |εci |} ≤ ε. These errors on the inputs may come from
rounding errors committed by storing them in the computer.

Theorem 2.2. Let J(c, a, b) be an n×n tridiagonal matrix and let α be a real number
such that J(c, a, b)−αI has a unique LU factorization. Let α̂ be the nearest floating
point number to α. If L̂, Û are the factors obtained by applying Algorithm 2.1 to
the matrix with floating entries J(ĉ, â, b̂) where

âi = ai(1 + εai), 1 ≤ i ≤ n,

b̂i = bi(1 + εbi
), ĉi = ci(1 + εci

), 1 ≤ i ≤ n− 1,

and
max

1≤i≤n−1
{|εai

|, |εan
|, |εbi

|, |εci
|} ≤ ε,

then

J(c + ∆c, a + ∆a, b + ∆b)− α̂I = L̂Û ,

|∆a| ≤ (3ε + 3ε2 + ε3)
[
|a|+ diag(|L̂||Û |)

]
, |∆b| ≤ ε |b|

|∆c| ≤ (2ε + ε2) |c| , |α̂− α| ≤ ε|α|.
where diag(|L̂||Û |) denotes the main diagonal of |L̂||Û |.

Proof. For the computed quantities, we have

l̂i =
ci

ûi
(1 + εci)(1 + εli), |εci |, |εli | ≤ ε.

Hence |ci − l̂iûi| ≤ (2ε + ε2)|ci|, which proves the theorem for the entries
(i + 1, i). Moreover, for i ≥ 2,

ûi+1(1 + νi) =
(
ai+1(1 + εai+1)− l̂ibi(1 + εbi

)(1 + βi)
)

(1 + γi)− α̂,

|νi|, |εai+1 |, |εbi |, |βi|, |γi| ≤ ε.

Hence

|ai+1 − ûi+1 − l̂ibi − α̂| ≤ (3ε + 3ε2 + ε3)
[
|ai+1|+ |ûi+1|+ |l̂ibi|

]
and the result follows. �

The previous result shows that the LU factorization of shifted tridiagonal
matrices would be backward stable if |ûi+1| + |l̂ibi| = O(|ai+1|) for i ≥ 2. Unfor-
tunately, we cannot assure that this is the case as the following simple numerical
experiment shows. Just consider the 2-by-2 tridiagonal matrix

J(c, a, b) =
[

0 1
1 1− 10−16

]
.

Let α = −10−16. Then, |û2| + |l̂1b1| = 2 · 1016 while a2 = 1 − 10−16. Hence, the
condition for backward stability does not hold in general. However, next we prove
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that the LU factorization of shifted tridiagonal matrices is stable in the mixed
forward-backward sense.

Definition 2.3. [5] A method for computing y = f(x) is called mixed forward-
backward stable (or numerically stable) if, for any x, it produces a computed ŷ
satisfying

ŷ + ∆ŷ = f(x + ∆x), |∆ŷ| ≤ ε|ŷ|, |∆x| ≤ η|x|.
Informally, a mixed forward-backward stable algorithm produces almost the right
answer for almost the right data.

Theorem 2.4. Let J(c, a, b) be any n × n tridiagonal matrix and let α be a real
number such that J(c, a, b) − αI has a unique LU factorization. If L̂, Û are the
factors obtained by applying Algorithm 2.1 to J(c, a, b) − αI, then the following
diagram commutes:

{a, b, c, α} Computed LU−−−−−−−−−→ {l̂, û}

Relative change of at most 3ε

y xRelative change of at most ε

{ã, b̃, c̃, α̃} Exact LU−−−−−−→ {l̂, ˜̂u}
where, for all i, ãi, b̃i c̃i and α̃ are obtained, respectively, from ai, bi, ci and α by
a relative change smaller than 2ε, 3ε, 3ε and ε, and ˜̂ui is obtained from ûi (resp.
l̂i) by a relative change smaller than ε.

Remark 2.5. In this theorem, O(ε2) terms are ignored for simplicity.

Proof. The computed quantities satisfy

l̂i =
ci(1 + εci)(1 + εi)

ûi
, |εci

|, |εi| ≤ ε, (2.1)

ûi+1(1 + νi+1) = [ai+1(1 + εai+1)− l̂ibi(1 + εbi
)(1 + βi)](1 + γi)− α(1 + εα)

(2.2)

|νi+1|, |εai+1 |, |εbi
|, |βi|, |γi| ≤ ε. (2.3)

By defining,

ãi = ai(1 + εai
)(1 + γi), b̃i = bi(1 + εbi

)(1 + βi)(1 + γi),

c̃i = ci(1 + εci)(1 + νi)(1 + εi), α̃ = α(1 + εα), and ˜̂ui = ûi(1 + νi),

then following exact relations follow from (2.1) and (2.2)

l̂i =
c̃i

˜̂u i
, and ˜̂ui+1 = ãi+1 − l̂ib̃i − α̃.

�

The result obtained from Theorem 2.4 can also be expressed in the following
way taking into account the following notation: L(l, 1) and U(u, b) denote, respec-
tively, a unit bidiagonal lower triangular matrix and a bidiagonal upper triangular
matrix as in (1.2).
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Theorem 2.6. Let J(c, a, b) be an n × n tridiagonal matrix and let α be a real
number such that J(c, a, b) − αI has a unique LU factorization. If L̂, Û are the
factors obtained by applying Algorithm 2.1 to J(c, a, b), then there exist vectors
∆c, ∆a, ∆b, ∆l̂ and ∆û such that

J(c + ∆c, a + ∆a, b + ∆b)− α̃ = L(l̂, 1)U(û + ∆û, b + ∆b), (2.4)

where

|∆a| ≤ 2ε|a|, |∆b| ≤ 3ε|b|, |∆c| ≤ 3ε|c|, |α̃− α| ≤ ε|α|, |∆û| ≤ ε|û|.

This shows that Algorithm 2.1 is componentwise stable in the mixed forward-
backward sense or just stable. This also implies, as we will show in next sections,
that Algorithm 2.1 is componentwise forward stable, which means that the obtained
forward errors are of similar magnitude to those produced by a backward stable
algorithm. Roughly speaking, this ensures that the forward errors obtained from
this algorithm are the best one can expect from the sensitivity of the problem.

3. A bound for the componentwise forward errors

In order to estimate the magnitude of the forward errors, we need to compute
a condition number for this problem. It is well known that the forward errors
produced by a backward stable algorithm are bounded by the product of the
backward error and the condition number of the problem. However, Algorithm
2.1 is not backward stable. When the algorithm is stable in the mixed forward-
backward sense, a bound can be found in a similar way. In order to give such a
bound we need first to define a condition number for the problem we are studying.

Theorem 3.1. Let J(c, a, b)− αI = L(l, 1)U(u, b) be the exact LU factorization of
the shifted tridiagonal matrix J(c, a, b)−αI, where α ∈ R. Let L(l̂, 1), and U(û, b)
be the factors computed by Algorithm 2.1. Then,

max
k

{∣∣∣∣∣ lk − l̂k
lk

∣∣∣∣∣ ,

∣∣∣∣uk − ûk

uk

∣∣∣∣
}
≤ ε

1− ε
(1 + 3 condC(J(c, a, b), α)) + O(ε2),

where condC(J(c, a, b), α) denotes the condition number of the problem (See Defi-
nition 3.8).

Proof. By definition of the condition number and taking into account (2.4), we get∣∣∣∣ui − ûi −∆ûi

ui

∣∣∣∣ ≤ max
i=1:n−1

{∣∣∣∣∆ai

ai

∣∣∣∣ ,

∣∣∣∣∆an

an

∣∣∣∣ ,

∣∣∣∣∆bi

bi

∣∣∣∣ ,

∣∣∣∣∆ci

ci

∣∣∣∣ ,

∣∣∣∣∆α

α

∣∣∣∣} condC(J(c, a, b), α).

This implies that ∣∣∣∣ui − ûi

ui

∣∣∣∣− ∣∣∣∣∆ûi

ui

∣∣∣∣ ≤ 3ε condC(J(c, a, b), α),
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or equivalently, taking into account (2.4) again,∣∣∣∣ui − ûi

ui

∣∣∣∣ ≤ 3ε condC(J(c, a, b), α) +
∣∣∣∣∆ûi

ui

∣∣∣∣ ≤ 3ε condC(J(c, a, b), α) + ε

∣∣∣∣ ûi

ui

∣∣∣∣ ,

Therefore,∣∣∣∣ui − ûi

ui

∣∣∣∣ ≤ 3ε condC(J(c, a, b), α) + ε

[
1 +

∣∣∣∣ui − ûi

ui

∣∣∣∣] ,

and the result follows for the entries in u. A similar bound can be found for the
forward errors corresponding to the entries of l. Taking into account both bounds,
the result follows. �

The bound obtained in Theorem 3.1 for the forward error is expressed in
terms of the condition number of the problem condC(J(c, a, b), α). Next we de-
fine this condition number and give an explicit expression for it. We study the
sensitivity of the shifted LU factorization of tridiagonal matrices with respect to
perturbations of the initial data, i.e., the parameters of the tridiagonal matrix
J(c, b, a), and the shift α. We give the definition of the relative componentwise
condition number of the shifted tridiagonal LU factorization with respect to rela-
tive componentwise perturbations in c, a, b and α, i.e., |∆c| ≤ u|c|, |∆a| ≤ u|a|,
|∆b| ≤ u|b| and |∆α| ≤ u|α|, with small u.

Definition 3.2. Let L(l, 1) and U(u, b) be the matrices obtained from the exact LU
factorization of J(c, b, a)−αI, where J(c, b, a) is a n×n tridiagonal matrix and α
is a real number. Let L(l + ∆l, 1) and U(u + ∆u, b + ∆b) be the factors obtained
from the LU factorization of J(c + ∆c, b + ∆b, a + ∆a)− (α + ∆α)I. Let us define

DC = max
{

max
1≤i≤n

{
|∆ai|
|ai|

}
, max
1≤i≤n−1

{
|∆ci|
|ci|

,
|∆bi|
|bi|

}
,
|∆α|
|α|

}
,

where any quotient has to be understood as zero if the corresponding denomina-
tor is equal to zero. Then the relative componentwise condition number of the
shifted tridiagonal LU factorization with respect to small componentwise relative
perturbations of c, a, b and α is defined as

condC(J(c, b, a), α) = lim
u→0

sup
0≤DC≤u

max
{

max
1≤i≤n

{∣∣∣∣∆ui

ui

∣∣∣∣} , max
1≤i≤(n−1)

{∣∣∣∣∆li
li

∣∣∣∣}}
DC

.

The condition number condC(J(c, a, b), α) is infinite if some of the denomi-
nators appearing in the relative changes of the outputs li, un, i.e, |∆li|

|li| , |∆un|
|un| is

zero. In these cases, other condition numbers have to be considered. For instance,
measuring absolute changes in the corresponding components of b (resp. un), or
measuring relative normwise changes of b (resp. un). We do not consider these
particular situations in this work. Notice that we have not considered the situa-
tion ui = 0 for i = 1, ..., n− 1 because ui = det(J(c, b, a)([1, ..., i], [1, ..., i])), which
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is nonzero since J(c, b, a) has an LU factorization. Here J(c, b, a)([1, ..., i], [1, ..., i])
denotes the leading principal submatrix of J(c, b, a) of order i.

Next we deduce a recursive expression for condC(J(c, a, b), α). The entries
of the vectors u and l are rational functions of the inputs c, a, b, and α, and, as
a consequence, the entries of u and l are differentiable functions of c, a, b, and α
whenever the denominators are different from zero. Therefore, condC(J(c, a, b), α)
can be expressed in terms of partial derivatives [3]. More precisely:

condC(J(c, a, b), α) = max{ max
1≤k≤n

{condC(uk)}, max
1≤k≤n−1

{condC(lk)}}, (3.1)

where

condC(uk) =
k∑

i=1

∣∣∣∣ ai

uk

∂uk

∂ai

∣∣∣∣ +
k−1∑
i=1

∣∣∣∣ ci

uk

∂uk

∂ci

∣∣∣∣ +
k−1∑
i=1

∣∣∣∣ bi

uk

∂uk

∂bi

∣∣∣∣ +
∣∣∣∣ α

uk

∂uk

∂α

∣∣∣∣ , (3.2)

condC(lk) =
k∑

i=1

∣∣∣∣ai

lk

∂lk
∂ai

∣∣∣∣ +
k∑

i=1

∣∣∣∣ ci

lk

∂lk
∂ci

∣∣∣∣ +
k−1∑
i=1

∣∣∣∣ bi

lk

∂lk
∂bi

∣∣∣∣ +
∣∣∣∣ α

lk

∂lk
∂α

∣∣∣∣ . (3.3)

In the previous expressions l0 := 0 and b0 := 0.
Notice that, according to Lemma 3.4 in the next subsection,∣∣∣∣ck

lk

∂lk
∂ck

∣∣∣∣ =
∣∣∣∣ck

lk

1
uk

∣∣∣∣ = 1.

Taking into account (3.1) and (3.3), we deduce that condC(J(c, a, b), α) ≥ 1.
Considering Theorem 3.1, we get the following result.

The next theorem gives a bound for the forward errors produced by Algorithm
2.1.

Theorem 3.3. Let J(c, a, b)− αI = L(l, 1)U(u, b) be the exact LU factorization of
the shifted tridiagonal matrix J(c, a, b)−αI, where α ∈ R. Let L(l̂, 1), and U(û, b)
be the factors computed by Algorithm 2.1. Then,

max
k

{∣∣∣∣∣ lk − l̂k
lk

∣∣∣∣∣ ,

∣∣∣∣uk − ûk

uk

∣∣∣∣
}
≤ 4ε

1− ε
condC(J(c, a, b), α) + O(ε2).

This means that Algorithm 2.1 is componentwise forward stable.

3.1. A recursive formula for the condition number and another proof of the for-
ward stability

In this subsection, we derive a recursive formula to compute the condition number
condC(J(c, a, b), α) in O(n) flops. Using this expression, we give an alternative
proof of the forward stability of Algorithm 2.1 taking into account the stability
result in Theorem 2.2.

Considering Algorithm 2.1 and the expression for lk, it is easy to check that
lk is function of a1, ..., ak, c1, ..., ck, b1, ..., bk−1, α.
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Lemma 3.4. Let J(c, b, a) be a n×n tridiagonal matrix. If α is a real number such
that J(c, a, b)−αI has a unique LU factorization, then lk has the following partial
derivatives with respect to a1, ..., ak, c1, ..., ck, b1, ..., bk−1, α.

∂lk
∂ai

=


lkbk−1

uk

∂lk−1

∂ai
, 1 ≤ i < k,

− lk
uk

, i = k.

∂lk
∂ci

=


lkbk−1

uk

∂lk−1

∂ci
, 1 ≤ i < k,

1
uk

, i = k.

∂lk
∂bi

=


lkbk−1

uk

∂lk−1

∂bi
, 1 ≤ i < k − 1,

lklk−1

uk
, i = k − 1.

∂lk
∂α

=


lk
uk

(
1 + bk−1

∂lk−1

∂α

)
, 2 ≤ k,

l1
u1

, k = 1.

Proof. First we consider ∂lk/∂ai. Taking into account the lk expression that follows
from Algorithm 2.1, the case for i = k is easy to check. Consider the case for
1 ≤ i < k. By the chain rule

∂lk
∂ai

=
∂lk
∂uk

· ∂uk

∂lk−1
· ∂lk−1

∂ai

By Algorithm 2.1
∂lk
∂uk

= − lk
uk

, and
∂uk

∂lk−1
= −bk−1.

Hence, the expression for ∂lk/∂ai follows. Likewise, we can derive the expressions
for ∂lk/∂ci and ∂lk/∂bi in a similar fashion.

Clearly, ∂l1
∂α = l1

u1
. Then, for k > 1 we obtain the following

∂lk
∂α

=
∂

∂α

(
ck

uk

)
= − lk

uk
· ∂uk

∂α
=

lk
uk

(
1 + bk−1

∂lk−1

∂α

)
.

�

Now we compute the partial derivatives for uk. We note, based on Algorithm
2.1, that uk is a function of a1, ..., ak, c1, ..., ck−1, b1, ..., bk−1, α.

Lemma 3.5. Let J(c, b, a) be a n×n tridiagonal matrix. If α is a real number such
that J(c, a, b)−αI has a unique LU factorization, then uk has the following partial
derivatives with respect to a1, ..., ak, c1, ..., ck−1, b1, ..., bk−1, α.
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∂uk

∂ai
=


lk−1bk−1

uk−1

∂uk−1

∂ai
, 1 ≤ i < k,

1, i = k.

∂uk

∂ci
=


lk−1bk−1

uk−1

∂uk−1

∂ci
, 1 ≤ i < k − 1,

− bk−1

uk−1
, i = k − 1.

∂uk

∂bi
=


lk−1bk−1

uk−1

∂uk−1

∂bi
, 1 ≤ i < k − 1,

−lk−1, i = k − 1.

∂uk

∂α
=

 −1 +
lk−1bk−1

uk−1

∂uk−1

∂α
, 2 ≤ k,

−1, k = 1.

Proof. First we consider ∂uk/∂ai. Taking into account the uk expression that
follows from Algorithm 2.1, the case for i = k is easy to check. Consider the case
for 1 ≤ i < k. By the chain rule

∂uk

∂ai
=

∂uk

∂lk−1
· ∂lk−1

∂uk−1
· ∂uk−1

∂ai

By Algorithm 2.1
∂uk

∂lk−1
= −bk−1, and

∂lk−1

∂uk−1
= − lk−1

uk−1
.

Hence, the expression for ∂uk/∂ai follows. Likewise, we can derive the ex-
pressions for ∂uk/∂ci and ∂uk/∂bi in a similar fashion.

Finally, ∂u1
∂α = −1. For k > 1 we obtain the following expression:

∂uk

∂α
=

∂

∂α
(ak − α− lk−1bk−1) = −1−bk−1

∂lk−1

∂α
= −1+

lk−1bk−1

uk−1

∂uk−1

∂α
. (3.4)

�

Next we define some auxiliary quantities that will be useful to give a recursive
formula for the condition number condC(J(c, b, a), α). Let us call

condCabc(lk) :=
k∑

i=1

∣∣∣∣ai

lk

∂lk
∂ai

∣∣∣∣ +
k∑

i=1

∣∣∣∣ ci

lk

∂lk
∂ci

∣∣∣∣ +
k−1∑
i=1

∣∣∣∣ bi

lk

∂lk
∂bi

∣∣∣∣ , (3.5)

condCabc(uk) :=
k∑

i=1

∣∣∣∣ ai

uk

∂uk

∂ai

∣∣∣∣ +
k−1∑
i=1

∣∣∣∣ ci

uk

∂uk

∂ci

∣∣∣∣ +
k−1∑
i=1

∣∣∣∣ bi

uk

∂uk

∂bi

∣∣∣∣ , (3.6)

These quantities can be computed recursively as the following lemma shows.
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Lemma 3.6.

condCabc(uk) =
∣∣∣∣ak

uk

∣∣∣∣ +
∣∣∣∣ lk−1bk−1

uk

∣∣∣∣ (2 + condCabc(uk−1)), for k ≥ 2,

where condCa,b,c(u1) =
∣∣∣ a1
u1

∣∣∣.
condCabc(lk) = 1 +

∣∣∣∣ak

uk

∣∣∣∣ +
∣∣∣∣ lk−1bk−1

uk

∣∣∣∣ (1 + condCabc(lk−1)), for k ≥ 2,

where condCa,b,c(l1) = 1 +
∣∣∣ a1
u1

∣∣∣.
We can now explicitly compute the condition number condC(J(c, a, b), α). We

present recursion formulas which have been derived from (3.2), (3.3), and Lemmas
3.4, 3.5 and 3.6.

Theorem 3.7.

condC(J(c, a, b), α) = max{ max
1≤k≤n

{condC(uk)}, max
1≤k≤n−1

{condC(lk)}},

where

condC(uk) =
∣∣∣∣ak

uk

∣∣∣∣ +
∣∣∣∣ lk−1bk−1

uk

∣∣∣∣ (2 + condCa,b,c(uk−1)) +
∣∣∣∣ α

uk
· ∂uk

∂α

∣∣∣∣ , (3.7)

condC(lk) = 1 +
∣∣∣∣ak

uk

∣∣∣∣ +
∣∣∣∣ lk−1bk−1

uk

∣∣∣∣ (1 + condCa,b,c(lk−1)) +
∣∣∣∣ α

lk
· ∂lk

∂α

∣∣∣∣ . (3.8)

The cost to compute condC(J(c, a, b), α) is 17n− 20. Therefore, we have got
an expression for the condition number that can be computed in O(n) flops.

In the sequel we give an alternative proof of the forward stability of Algorithm
2.1. First we define a new condition number for the LU factorization of shifted
tridiagonal matrices. Now we consider a different kind of perturbation of the initial
data, perturbations associated with the backward error found in Theorem 2.2.

Definition 3.8. Let L(l, 1) and U(u, b) be the matrices obtained from the exact LU
factorization of J(c, b, a)−αI, where J(c, b, a) is a n×n tridiagonal matrix and α
is a real number. Let L(l + ∆l, 1) and U(u + ∆u, b + ∆b) be the factors obtained
from the LU factorization of J(c + ∆c, b + ∆b, a + ∆a)− (α + ∆α)I. Let us define

DB = max
{

max
1≤i≤n

{
|∆ai|

|ai|+ |ui|+ |li−1bi−1|

}
, max
1≤i≤n−1

{
|∆ci|
|ci|

,
|∆bi|
|bi|

}
,
|∆α|
|α|

}
,

where any quotient has to be understood as zero if the corresponding denomina-
tor is equal to zero. Then the relative componentwise condition number of the
shifted tridiagonal LU factorization with respect to perturbations associated to
the backward errors in Theorem 2.2 is defined as

condB(J(c, b, a), α) = lim
u→0

sup
0≤DB≤u

max
{

max
1≤i≤n

{∣∣∣∣∆ui

ui

∣∣∣∣} , max
1≤i≤(n−1)

{∣∣∣∣∆li
li

∣∣∣∣}}
DB

.
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A recursive expression for this new condition number can be found similarly
to how condC(J(c, a, b), α) was computed.

Theorem 3.9.

condB(J(c, a, b), α) = max{ max
1≤k≤n

{condB(uk)}, max
1≤k≤n−1

{condB(lk)}},

where

condB(uk) = 1+
∣∣∣∣ak

uk

∣∣∣∣+ ∣∣∣∣ lk−1bk−1

uk

∣∣∣∣ (3 + condBa,b,c(uk−1))+
∣∣∣∣ α

uk
· ∂uk

∂α

∣∣∣∣ , (3.9)

condB(lk) = 2 +
∣∣∣∣ak

uk

∣∣∣∣ +
∣∣∣∣ lk−1bk−1

uk

∣∣∣∣ (2 + condBa,b,c(lk−1)) +
∣∣∣∣ α

lk
· ∂lk

∂α

∣∣∣∣ . (3.10)

Notice that, taking into account Theorem 2.2,

max
k

{∣∣∣∣∣ lk − l̂k
lk

∣∣∣∣∣ ,

∣∣∣∣uk − ûk

uk

∣∣∣∣
}
≤ 3ε condB(J(c, a, b), α) + O(ε2),

and therefore, Algorithm 2.1 is forward stable if condB(J(c, a, b), α) has the same
order of magnitude as condC(J(c, a, b), α).

The proof of the following lemma is straightforward.

Lemma 3.10. For k = 1, ..., n− 1

condC(lk) ≤ condB(lk) ≤ 2 condC(lk),

Notice that condC(uk) ≤ condB(uk) is also a trivial result. Now we must
prove that condB(uk) ≤ R condC(uk) for some moderate constant R. However
this is not a straightforward result. Let us define condα(uk) :=

∣∣∣ α
uk

· ∂uk

∂α

∣∣∣ . Then,

condC(uk) = condCa,b,c(uk) + condα(uk).
The next lemma is the key to proving the remaining inequality.

Lemma 3.11. For all k = 1, ..., n,

condC(uk) ≥ 1.

Proof.
condCabc(uk) = condCa(uk) + condCb(uk) + condCc(uk),

where condCa(uk) =
∑k

i=1

∣∣∣ ai

uk

∂uk

∂ai

∣∣∣, condCc(uk) =
∑k−1

i=1

∣∣∣ ci

uk

∂uk

∂ci

∣∣∣ and condCb(uk) =∑k−1
i=1

∣∣∣ bi

uk

∂uk

∂bi

∣∣∣. It can easily been proven that

condCa(uk) =
∣∣∣∣ak

uk

∣∣∣∣ +
k−1∑
i=1

∣∣∣∣ai

ui

∣∣∣∣ k−1∏
j=i

∣∣∣∣ ljbj

uj+1

∣∣∣∣ .

condCb(uk) = condCc(uk) =
k−1∑
i=1

k−1∏
j=i

∣∣∣∣ ljbj

uj+1

∣∣∣∣ .
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condα(uk) =

∣∣∣∣∣∣ α

uk
+

k−1∑
i=1

α

uk

k−1∏
j=i

ljbj

uj

∣∣∣∣∣∣ .

Taking into account that α = ai − ui − li−1bi−1 for i = 1, ..., n, we get

condα(uk) =

∣∣∣∣∣∣−1 +
ak

uk
− lk−1bk−1

uk
+

k−1∑
i=1

ai − ui − li−1bi−1

ui

k−1∏
j=i

ljbj

uj+1

∣∣∣∣∣∣
=

∣∣∣∣∣∣1− ak

uk
−

k−1∑
i=1

ai

ui

k−1∏
j=i

ljbj

uj+1
+ 2

k−1∑
i=1

k−1∏
j=i

ljbj

uj+1

∣∣∣∣∣∣
≥ 1− condCa(uk)− 2 condCb(uk)

and the result follows. �

Lemma 3.12. For k ≥ 1,

condC(uk) ≤ condB(uk) ≤ 3 condC(uk).

Proof. The first inequality is obvious. Let us prove the second one. Notice that

condB(uk) = 1 +
∣∣∣∣ak

uk

∣∣∣∣ +
k−1∑
i=1

(
4 +

∣∣∣∣ai

ui

∣∣∣∣) k−1∏
j=i

∣∣∣∣ ljbj

uj+1

∣∣∣∣ + condα(uk).

condC(uk) =
∣∣∣∣ak

uk

∣∣∣∣ +
k−1∑
i=1

(
2 +

∣∣∣∣ai

ui

∣∣∣∣) k−1∏
j=i

∣∣∣∣ ljbj

uj+1

∣∣∣∣ + condα(uk).

Then, taking into account Lemma 3.11,

condB(uk) ≤ condC(uk) + 2 condC(uk),

and the result follows. �

Theorem 3.13. Let J(c, a, b) be a tridiagonal matrix and let α be a real number
such that J(c, a, b)− αI has a unique LU factorization. Then,

condC(J(c, a, b), α) ≤ condB(J(c, a, b), α) ≤ 3 condC(J(c, a, b), α).

This result implies that the LU factorization of shifted tridiagonal matrices is com-
ponentwise forward stable.

Proof. The proof can be obtained using the definition of condC(J(c, a, b), α) and
condB(J(c, a, b), α), and taking into account Lemmas 3.10 and 3.12. �



14 Brittin and M. I. Bueno Mediterr. j. math.

References

[1] C. Brittin, and M. I. Bueno, A note on the stability of the LU factorization of
Hessenberg matrices, preprint.

[2] M. I. Bueno, and F. M. Dopico, Stability and sensitivity of tridiagonal LU factor-
ization without pivoting, BIT 44(2004), 651-673.
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