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Abstract

In this paper we consider the problem of describing the possible exponents of
n-by-n Boolean primitive circulant matrices. It is well known that this set is a
subset of [1, n− 1] and not all integers in [1, n− 1] are attainable exponents. In the
literature, some attention has been paid to the gaps in the set of exponents. The
first three gaps have been proven, that is, the integers in the intervals [bn/2c+1, n−
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2], [bn/3c + 2, bn/2c − 2] and [bn/4c + 3, bn/3c − 2] are not attainable exponents.
Here we study the distribution of exponents in between those gaps by giving the
exact exponents attained there by primitive circulant matrices. We also study the
distribution of exponents in between the third gap and our conjectured fourth gap.
It is interesting to point out that the exponents attained in between the (i-1)th and
the ith gap depend on the value of n mod i.

1 Introduction

A Boolean matrix is a matrix over the binary Boolean algebra {0, 1}. An n-by-n Boolean
matrix C is said to be circulant if each row of C (except the first one) is obtained from the
preceding row by shifting the elements cyclically 1 column to the right. In other words,
the entries of a circulant matrix C = (cij) are related in the manner: ci+1,j = ci,j−1, where
0 ≤ i ≤ n−2, 0 ≤ j ≤ n−1, and the subscripts are computed modulo n. The first row of
C is called the generating vector. Here and throughout we number the rows and columns
of an n-by-n matrix from 0 to n− 1.

The set of all n-by-n Boolean circulant matrices forms a multiplicative commutative
semigroup Cn with |Cn| = 2n [5, 9]. In 1974, K. H. Kim-Buttler and J.R. Krabill [7], and
S. Schwarz [10] investigated this semigroup thoroughly.

An n-by-n Boolean matrix C is said to be primitive if there exists a positive integer
k such that Ck = J , where J is the n-by-n matrix whose entries are all ones and the
product is computed in the algebra {0, 1}. The smallest such k is called the exponent of
C, and we denote it by exp(C). Let us denote En = {exp(C) : C ∈ Cn, C is primitive}.

In [1] we stated the following question: Given a positive integer n, what is the set En?
The previous question can easily be restated in terms of circulant graphs or bases for

finite cyclic groups, as we explain next.
Let C be a Boolean primitive circulant matrix and let S be the set of positions cor-

responding to the nonzero entries in the generating vector of C (where the columns
are counted starting with zero). C is the adjacency matrix of the circulant digraph
Cay(Zn, S). The vertex set of this graph is Zn and there is an arc from u to u+a (mod n)
for every u ∈ Zn and every a ∈ S. A digraph D is called primitive if there exists a positive
integer k such that for each ordered pair a, b of vertices there is a directed walk from a
to b of length k in D. The smallest such integer k is called the exponent of the primitive
digraph D. Thus, a circulant digraph G is primitive if and only if its adjacency matrix
is. Moreover, if they are primitive, they have the same exponent. Therefore, finding the
set En is equivalent to finding the possible exponents of circulant digraphs of order n.

Let n be a positive integer and let S be a nonempty subset of the additive group Zn.
For a positive integer k we denote by kS the set given by

kS = {s1 + · · ·+ sk mod n : si ∈ S} ⊂ Zn.

The set kS is called the k-fold sumset of S.
The set S is said to be a basis for Zn if there exists a positive integer k such that kS =

Zn. The smallest such k is called the order of S, denoted by order(S). It is well known
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that the set S = {s0, s1, ..., sr} ⊂ Zn is a basis if and only if gcd(s1− s0, ..., sr− s0, n) = 1.
In [1] we proved that, given a matrix C in Cn, if S is the set of positions corresponding to
the nonzero entries in the generating vector of C, then C is primitive if and only if S is a
basis for Zn. Moreover, if C is primitive, then exp(C) = order(S). Therefore, finding the
set En is equivalent to finding the possible orders of bases for the cyclic group Zn. This
question is quite interesting by itself.

The problem we study in this paper has applications in different areas. In particu-
lar, circulant matrices appear as transition matrices in Markov processes [3]. Also, the
problem stated in terms of bases for Zn has applications in Coding Theory and Quantum
information [8].

In the literature, the problem of computing all possible exponents attained by circu-
lant primitive matrices or, equivalently, by circulant digraphs, has been considered. In
particular, the following results were obtained. Here and throughout, [a, b] denotes the
set of positive integers in the real interval [a, b]. If a > b then [a, b] = ∅.

Lemma 1. [4, 11] If C is a primitive circulant matrix, then its exponent is either n− 1,
bn/2c, bn/2c − 1 or does not exceed bn/3c + 1. Moreover, exp(C) = n− 1 if and only if
the number of nonzero entries in the generating vector of C is exactly 2.

Lemma 2. [6] For every n ≥ 3, [bn/4c+ 3, bn/3c − 2] ∩ En = ∅.

All these results can be immediately translated into results about the possible orders
of bases for a finite cyclic group.

Note that the only primitive matrix in C2 is J2, so E2 = {1}. From now on, we assume
that n ≥ 3. In [1] we presented a conjecture concerning the possible exponents attained
by n-by-n Boolean primitive circulant matrices which we restate here in a more precise
way. We start with a definition.

Definition 3. Let j be a positive integer. We call the jth box of Zn, and denote it by Bj,
the set of positive integers [⌊

n

j

⌋
− 1,

⌊
n

j

⌋
+ j − 2

]
.

Conjecture 4. If C ⊆ Cn is primitive, then

exp(C) ∈ [1,
⌊√

n
⌋
] ∪
b√nc⋃
j=1

Bj.

In a recent preprint [6], it was proven that if C ∈ Cn is primitive and its exponent is
greater than k for some positive integer k, then there exists dk such that the exponent
of C is within dk of n/l for some integer l ∈ [1, k]. Notice that the result we present
in Conjecture 4 produces gaps in the set of exponents which are larger than the ones
encountered in [6]. In fact, we showed in [2] that the gaps in our conjecture should be
maximal. However, as stated in [6], we remain far from a complete characterization of
the possible exponents of n× n primitive circulant matrices.
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All the results in this paper are given in terms of bases for Zn since the equivalent for-
mulation of the problem in these terms resulted more fruitful than the original statement
of the problem in terms of circulant matrices. Lemmas 1 and 2 show the gaps between
the first and second box, between the second and third box, and between the third and
fourth box when these boxes do not overlap. Here we study the distribution of orders of
bases in the first three boxes by showing what orders are attained and which ones are
not. We also study the order of bases in the fourth box by giving orders that are attained
and we conjecture that those are, in fact, the exact orders in that box. In addition, we
also prove that all integers in [1,

⌊√
n
⌋
] are attained by bases of Zn.

This paper is organized as follows. In Section 2 we state our main results and prove
them in Section 4. In section 3 we state and prove several auxiliary results concerning
the order of bases for Zn, which will be used to prove our main theorems. The order of
several bases for Zn with cardinality at most 4 that are relevant to our proofs is studied
in the appendix.

2 Main Results

In this section, we give the exact orders attained by bases for Zn in the first three boxes
of Zn. We also give orders attained in the fourth box. Notice that the results for the
first and second box were already known [4, 11] but we include them for completeness.
Finally, we state that all integers up to

⌊√
n
⌋

are in En.
The result for the first box is an immediate consequence of Lemma 1.

Theorem 5. [4] For all n,
B1 ⊆ En.

The next theorems are our main results and will be proved in Section 4. In our first
two results we assume a lower bound n0 for n, which is the smallest value of n for which
the theorem holds for all n > n0. The possible orders in En, with n < n0, appear in Tables
1 and 2. We observe that, for any n for which the box under study does not overlap with
adjacent boxes, the theorem holds. We also notice that, though we have a lower bound
for n in our results, when n ≡ 0 mod j, j = 2, 3, 4, Bj is a subset of En, for all n.

Theorem 6. Let n ≥ 17 be a positive integer.

• If n is even, then B2 ⊆ En.

• If n is odd, then B2 ∩ En =
⌊n

2

⌋
.

Theorem 7. Let n ≥ 45 be a positive integer.

• If n ≡ 0 (mod 3), then B3 ⊆ En.

• If n ≡ 1 (mod 3), then B3 ∩ En =
{⌊n

3

⌋
+ 1,

⌊n
3

⌋}
.
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• If n ≡ 2 (mod 3), then B3 ∩ En =
{⌊n

3

⌋
+ 1
}
.

Theorem 8. Let n ≥ 16 be a positive integer.

• If n ≡ 0 (mod 4), then B4 ⊆ En.

• If n ≡ 1 (mod 4), then
{⌊n

4

⌋
+ 2,

⌊n
4

⌋
+ 1,

⌊n
4

⌋}
⊆ En.

• If n ≡ 2 (mod 4) or n = 3 mod(4), then
{⌊n

4

⌋
+ 2,

⌊n
4

⌋
+ 1
}
⊆ En.

Though we do not prove it, we conjecture that bn/4c − 1 /∈ En when n ≡ 1 (mod 4)
and bn/4c − 1, bn/4c /∈ En when n ≡ 2, 3 (mod 4).

n En n En n En

2 1 23 1...8,11,22 44 1...13, 15, 21, 22, 43
3 1,2 24 1...9, 11, 12, 23 45 1...16, 22, 44
4 1,2,3 25 1...9, 12, 24 46 1...13, 15, 16, 22, 23, 45
5 1, 2, 4 26 1...9,12, 13, 25 47 1...13, 16, 23, 46
6 1, 2, 3, 5 27 1...10,13,26 48 1...17, 23, 24, 47
7 1,2,3,6 28 1...10, 13, 14, 27 49 1...14, 16, 17, 24, 48
8 1...4,7 29 1...10, 14, 28 50 1...14, 17, 24, 25, 49
9 1...4,8 30 1...11, 14, 15, 29 51 1...14, 16, 17, 18, 25, 50
10 1...5,9 31 1...11, 15, 30 52 1...15, 17, 18, 25, 26, 51
11 1...5, 10 32 1...11, 15, 16, 31 53 1...15, 18, 26, 52
12 1...6, 11 33 1...12, 16, 32 54 1...15, 19, 26, 27, 53
13 1...6, 12 34 1...12, 16, 17, 33 55 1...15, 19, 27, 54
14 1...7, 13 35 1...10, 12, 17, 34 56 1...16, 19, 27, 28, 55
15 1...7,14 36 1...13, 17, 18, 35 57 1...16, 19, 20, 28, 56
16 1...8,15 37 1...13, 18, 36 58 1...16, 20, 28, 29, 57
17 1...6,8,16 38 1...11, 13, 18, 19, 37 59 1...16, 20, 29, 58
18 1...9, 17 39 1...14, 19, 38 60 1...17, 19,20,21, 29, 30, 59
19 1...7, 9,18 40 1...14, 19, 20, 39 61 1...17, 20, 21, 30, 60
20 1...7, 9,10,19 41 1...12, 14, 20, 40 62 1...17, 21, 30, 31, 61
21 1...8,10,20 42 1...14, 15, 20, 21, 41 63 1...17, 20, 21, 22, 31, 62
22 1...8, 10, 11, 21 43 1...12, 14, 15, 21, 42 64 1...18, 21, 22, 31, 32, 63

Table 1: Orders of bases for Zn

In Tables 1 and 2 we give the exact orders attained by bases for Zn with n =
2, 3, 4, ..., 104. As the numerical experiments show, for each n there is a number of con-
secutive orders that can be attained by bases of Zn. Though we just prove Theorem
9, according to our numerical experiments, we conjecture that at least all consecutive
integers up to 2

√
n− 2 are attained orders.
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Theorem 9. Let n be a positive integer. Then, [1,
⌊√

n
⌋
] ⊆ En.

Though this result is referred in [6], it seems that the paper where its proof is said to
be is not available.

n En n En

65 1,...,14,16,17,18,22,32,64 85 1,...,18,20,21,22,23,28,29,42,84
66 1,...,18, 21,22,23,32,33,65 86 1,...,18,20,21,22,23,29,42,43,85
67 1,...,18, 22, 23, 33, 66 87 1,...,18,20,22,23,28,29,30,43,86
68 1,...,19,23,33,34,67 88 1,...,24,29,30,43,44,87
69 1,...,19,22,23,24,34,68 89 1,...,20,22,23,24,30,44,88
70 1,...,15, 17,18,19,23,24,34,35,69 90 1,...19,21,22,23,24,29,30,31,44,45,89
71 1,...,19, 24, 35, 70 91 1,...,21,23,24,30,31,45,90
72 1,...,20, 23,24,25,35,36,71 92 1,...19,21,22,23,24,25,31,45,46,91
73 1,...,20, 24, 25, 36, 72 93 1,...,21,23,24,25,30,31,32,46,92
74 1,...,20, 25, 36, 37, 73 94 1,...,21,23,24,25,31,32,46,47,93
75 1,...,16, 18,19,20,24,25,26,37,74 95 1,...,20,22,24,25,32,47,94
76 1,...,21,25,26,37,38,75 96 1,...,26,31,32,33,47,48,95
77 1,...,16,18,19,20,21,26,38,76 97 1,...,18,20,22,24,25,26,32,33,48
78 1,...,21,25,26,27,38,39,77 98 1,...,22,24,25,26,33,48,49,97
79 1,...,18, 20,21,26,27,39,78 99 1,...,22, 25,26,32, 33,34, 49, 98
80 1,...,17,19,20,21,22,27,39,40,79 100 1,...,21, 23, 24, 25, 26, 27, 33, 34, 49, 50, 99
81 1,...,22,26,27,28,40,80 101 1,...,23, 25, 26, 27, 34, 50,100
82 1,...,17,19,20,21,22,27,28,40,41,81 102 1,...,21,23,25,26,27,33,34,35,50,51,101
83 1,...,19,21,22,28,41,82 103 1,...,19, 21, 22, 23, 26, 27, 34, 35, 51, 102
84 1,...,23,27,28,29,41,42,83 104 1,...,19, 21,22,23,25,26,27,28,35,51,52,103

Table 2: Orders of bases for Zn

3 Order of Bases for Zn

Computing the order of bases for Zn is, in general, a challenging task. In this section
we introduce some results relative to the order of bases of Zn that will be helpful when
proving our main results.

To start with, let us notice that the order of a basis S is invariant under shifts and
multiplication by a unit of Zn, that is, for a ∈ Zn and b a unit of Zn

order(S) = order(S + a), and order(S) = order(b ∗ S) (1)

where b ∗ S = {bs mod n : s ∈ S}. In particular, this result implies that the set of orders
attained by bases of Zn is the same as the set of orders attained by bases of Zn containing
0.
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We now state some known results about the order of a basis for Zn. The following
lemma gives an upper bound on the cardinality of a basis when a lower bound on its
order is known.

Lemma 10. [8] Let n ∈ N and ρ ∈ [2, n−1]. Let S be a basis for Zn such that order(S) ≥
ρ. Then,

|S| ≤ max

{
n

d

(⌊
d− 2

ρ− 1

⌋
+ 1

)
: d|n, d ≥ ρ+ 1

}
.

In particular, for each fixed k ∈ N, if order(S) ≥ n

k
and n >> 0, then |S| ≤ 2k.

The next lemma gives an upper and a lower bound on the order of some bases for Zn

with cardinality 3.

Lemma 11. [2] Let 2 ≤ b ≤ n− 1. Then,⌊n
b

⌋
≤ order({0, 1, b}) ≤

⌊n
b

⌋
+ b− 2.

Lemma 12. Let 1 ≤ r < b ≤ n− 1. Then,

order({0, 1, 2, ..., r, b}) ≤
⌊n
b

⌋
+

⌈
b− 2

r

⌉
.

Proof. Let S = {0, 1, 2, ..., r, b}. It can be shown by induction on k that, for k ≥ 1,

kS =
k⋃

i=0

[li,k, ui,k],

where li,k = ib and ui,k = ib + (k − i)r. Let n = bm + t, with 0 ≤ t < b. We have
max

i=1,...,m
= li,m− ui−1,m = b− r and um,m = mb. Also note that, if x ∈ kS, then {x, . . . , x+

k′r} ∈ (k + k′)S. Then,

order(S) ≤ m+ max

{⌈
b− r − 1

r

⌉
,

⌈
t− 1

r

⌉}
≤ m+

⌈
b− 2

r

⌉
which proves the result.

We now give the exact order of some particular bases for Zn that will be needed later.
The next lemma shows, in particular, that the largest element of the jth box, j ≤

√
n,

belongs to En for all n.

Lemma 13. [1] For j ∈ {1, 2, . . . ,
⌊√

n
⌋
},

order{0, 1, j}) =

⌊
n

j

⌋
+ j − 2.
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Lemma 14. [2] Let 2 ≤ j ≤
√
n be a positive integer. Then,

order

({
0, 1,

⌊
n

j

⌋
+ 1

})
=

⌊
n

j

⌋
+ j − 2.

Lemma 15. [1] Let 2 ≤ r ≤ n− 1 and t = n− r bn/rc. Then,

order({0, 1, 2, ..., r − 1, r}) =

{
bn/rc , if t ≤ 1
bn/rc+ 1, if t > 1

.

Lemma 16. Let 2 ≤ r ≤ n− 2. Then,

order({0, 1, 2, ..., r − 1, r + 1}) =

⌊
n

r + 1

⌋
+ 1.

Proof. Let S = {0, 1, 2, ..., r−1, r+1}. It can be shown by induction on k that, for k ≥ 1,
kS = [0, · · · , k(r+1)−2]∪{k(r+1)}. Thus, order(S) = k if and only if k is the minimum
integer such that k(r + 1)− 2 ≥ n− 1, which implies the result.

Lemma 17. Suppose that m is a divisor of n and let 1 ≤ q < m ≤ n. Then,

order

(
q⋃

i=0

(i+ 〈m〉)

)
=

⌈
m− 1

q

⌉
.

Proof. Let S be the basis in the statement. Note that kS =

kq⋃
i=0

(i + 〈m〉). Therefore, the

order of S equals the minimum k such that kq ≥ m− 1 and the result follows.

As a consequence of the previous result, we obtain that, if j is a divisor of n, the smallest
element of the jth box is an element of En, as order (〈n/j〉 ∪ (1 + 〈n/j〉)) = n/j − 1.

Using canonical projections we can bound the order of some bases in a convenient
way. Given Zn and a proper divisor m of n, we denote by φ the canonical quotient map
φ : Zn → Zn/m. We denote by ordern(S) the order of the basis S as a subset of Zn.

Lemma 18. Let m be a proper divisor of n. If S is a basis for Zn that contains zero and
an element of order m, then φ(S) is a basis for Zn/m and

ordern/m(φ(S)) ≤ ordern(S) ≤ ordern/m(φ(S)) +m− 1.

Proof. First, we show, by induction on k, that φ(kS) = kφ(S) for all k ≥ 1. Clearly the
equality holds for k = 1. Since φ is a group homomorphism, we get

φ((k + 1)S) = φ(kS + S) = φ(kS) + φ(S) = kφ(S) + φ(S) = (k + 1)φ(S). (2)

Let ordern(S) = q. As qS = Zn, the first inequality follows because

qφ(S) = φ(qS) = φ(Zn) = Zn/m

as φ is surjective.
Now we prove the second inequality. Let s be an element of order m in S. Then

s ∈ 〈n/m〉 , that is, s = b0 n/m for some b0 ∈ {1, . . . ,m − 1}. Let ordern/m(φ(S)) = t.
Then, since φ(tS) = tφ(S) = Zn/m,
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{
0, b0

n

m
, 1 + b1

n

m
, 2 + b2

n

m
, . . . ,

n

m
− 1 + b n

m
−1
n

m

}
⊆ tS

for some bi ∈ {0, 1, ...,m − 1}, 1 ≤ i ≤ n/m − 1. Since ls ∈ (m− 1)S for all l ∈
{0, 1, ...,m− 1}, then i+ bi n/m+ ls ∈ (m− 1)S + tS, for all l and all i. But this shows
that Zn ⊆ (m− 1 + t)S, so that ordern(S) ≤ m− 1 + t. Note that

Zn =
⋃

1≤i≤n/m−1
0≤l≤m−1

{
i+ bi

n

m
+ ls

}
.

The next corollaries are immediate consequences of the previous lemma and Lemma
1.

Corollary 19. Suppose m is a proper divisor of n and S is a basis for Zn that contains
zero and an element of order m. Then,

order(S) ≤ n

m
+m− 2.

Corollary 20. Let S be a basis for Zn and assume that S contains zero and an element
of order 2. Then,

order(S) ≤
⌊n

4

⌋
+ 1 or order(S) ≥

⌊n
2

⌋
− 1.

Corollary 21. Let S be a basis for Zn and assume that S contains zero and an element
of order 3. Then,

order(S) ≤
⌊n

6

⌋
+ 2 or order(S) ≥

⌊n
3

⌋
− 1.

The next lemma allows us to prove Corollary 23, which is a key result in the proof of
our main theorems.

Lemma 22. Let j ≥ 2 be an integer and assume that b ∈ Ij =

[⌊
n

j + 1

⌋
+ 2,

⌊
n

j

⌋
− 1

]
.

Then,

order({0, 1, b}) ≤
⌊

n

j + 2

⌋
+ j.

Proof. Let S = {0, 1, b}. First we observe that j + 1 < (j + 1)b − n < b. To see this,

suppose that b =

⌊
n

j + 1

⌋
+ i ∈ Ij. Then n = (j + 1)(b− i) + r, with 0 ≤ r < j + 1 which

implies b(j + 1)− n = (j + 1)i− r. On the other hand, since j + 1 > r and i ≥ 2, we get
that (j + 1)i − r > 2(j + 1) − (j + 1) = (j + 1). Thus the inequality on the left follows.
The inequality on the right is true because bj < bn/jc j ≤ n. We now divide the proof
into three cases.
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Case 1: Assume b is even and (j + 1)b− n = b/2. This implies that (2j + 1)b/2 = n
and, therefore, b is not a divisor of n. Since (2j + 1)b = 2n, then b is an element of Zn of
order 2j + 1. Then,

order(S) ≤ n

2j + 1
+ 2j − 1 ≤

⌊
n

j + 2

⌋
+ j.

The first inequality follows from Corollary 19. In order to prove the second inequality,
notice that, since j + 1 < b/2 and b/2 is an integer, then b/2 = j + 2 + k for some
nonnegative integer k. Thus,⌊

n

j + 2

⌋
+ j =

⌊
(2j + 1)(j + 2 + k)

j + 2

⌋
+ j = 3j + 1 +

⌊
(2j + 1)k

j + 2

⌋
≥ 3j + 1 + k =

b

2
+ 2j − 1 =

n

2j + 1
+ 2j − 1.

Case 2: Assume (j + 1)b − n < b/2. Let k = j + 1 and p = (j + 1)b − n. Clearly,
[0, k] ∪ {p} ∪ [b, b+ k − 1] ⊆ kS. It can be shown by induction on q that

q⋃
i=0

[ip, ip+ (q − i)k] ∪ [b, b+ qk − 1] ⊂ qkS (3)

and
q−1⋃
i=0

[ip+ (k − 1)b, ip+ (k − 1)b+ (q − (i+ 1))k] ⊂ (qk − 1)S. (4)

Now assume that q is the largest integer such that qp < b, that is, q = bb/pc and let
l = max{b− pq, p− k}. Note that q ≥ 2. Also, the gaps between consecutive intervals in
the unions in (3) and (4) have at most l-1 elements. Thus, we have

[0, b+ j] ∪ [jb, jb+ (q − 1)p+ l] ⊆ (qk + l − 1)S.

Since [0, ib+j] ⊆ (qk+ l−1+ i−1)S, for all i ≥ 1, we get [0, jb+j] ⊆ (qk+ l−1+j−1)S.
Thus, [0, jb+ (q − 1)p+ l + j − 1] ⊆ (qk + l − 1 + (j − 1))S. We now show that

jb+ (q − 1)p+ l + j − 1 ≥ n− 1,

or, equivalently,
(q − 1)p+ l + j ≥ n− jb, (5)

which implies
order(S) ≤ qk +max{b− pq, p− k}+ j − 2. (6)

In fact, since n− jb = b− p, (5) is equivalent to j + l ≥ b− qp, which is true because of
the definition of l.

Let b = pq + r, 0 ≤ r < p and q1 = brk/pc. We proceed by proving that

max{b− pq, p− k} ≤ q1 + p− k (7)
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which implies

order(S) ≤
⌊
bk

p

⌋
+ p− k + j − 2. (8)

Since q1 ≥ 0, the case p− k ≥ b− pq is clear. Consider the case r = b− pq > p− k. Let
f = p− r. Then, 1 ≤ f < k and

q1 =

⌊
rk

p

⌋
=

⌊
(p− f)k

p

⌋
= k −

⌈
fk

p

⌉
≥ k − f,

where the last inequality follows because k = j + 1 < (j + 1)b− n = p. So

q1 + p− k ≥ k − f + p− k = p− f = r

and (7) follows. Taking into account (8), to complete the proof it is sufficient to show
that ⌊

bk

p

⌋
+ p− k + j − 2 ≤

⌊
n

j + 2

⌋
+ j. (9)

Let g be the function given by

g(b) =
bk

p
+ p− 3 =

n

p
+ p− 2.

It is enough to show that

g(b) ≤ n

j + 2
+ j.

A calculation shows that g(b) ≤ n

j + 2
+j if and only if p ∈

[
j + 2,

n

j + 2

]
or equivalently,

if and only if

b ∈
[
n+ j + 2

j + 1
,
n+ n

j+2

j + 1

]
.

By hypothesis, b <
2n

2j + 1
, and it is easy to see that

2n

2j + 1
≤
n+ n

j+2

j + 1
. Also,

⌈
n+ j + 2

j + 1

⌉
=

⌈
n+ 1

j + 1

⌉
+ 1 ≤

⌊
n

j + 1

⌋
+ 2 ≤ b.

Thus, (9) follows.
Case 3: Assume (j+1)b−n > b/2. Note that j = bn/bc. Let n = jb+r3, 0 ≤ r3 < b.

Thus, (j+ 1)b−n = b− r3. Clearly, [0, j+ 1]∪{b− r3}∪ [b, b+ j]∪ [jb, jb+ 1] ⊆ (j+ 1)S.
It can be shown by induction on j that

[0, qj + 1] ∪
q−1⋃
i=0

[b− (q − i)r3, b− (q − i)r3 + ij] ∪ [b, b+ qj] ⊂ (qj + 1)S (10)
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Denote by q the largest integer such that qj + 2 ≤ b − qr3, that is, q =

⌊
b− 2

j + r3

⌋
. Let

l = max{r3, b − q(j + r3) − 1}. Note that any gaps between consecutive intervals in the
union (10) have at most l− 1 elements. Since [jb, jb+ (q − 1)j + 1] ⊂ (qj + 1)S, we have

[0, b+ qj + l − 1] ∪ [jb, jb+ (q − 1)j + 1 + l − 1] ⊂ (qj + 1 + l − 1)S,

which implies

[0, jb+ (q − 1)j + 1 + l − 1 + j − 1] ⊂ (qj + 1 + l − 1 + j − 1)S.

As
jb+ (q − 1)j + 1 + l + j − 2 = jb+ qj + l − 1 ≥ jb+ r3 − 1 = n− 1,

it follows that

order(S) ≤ qj +max{r3, b− q(j + r3)− 1}+ j − 1. (11)

Now we show that

qj + l + j − 1 ≤
⌊
j(b− 1)

j + r3

⌋
+ j + r3 − 1 ≤

⌊
n

j + 2

⌋
+ j. (12)

To see the first inequality in (12), it is enough to note that, by definition of q, q(j+ r3) <
b−1 and b−1 ≤ (q+1)(j+r3). To see the second inequality in (12), let h be the function
given by

h(b) =
j(b− 1)

j + r3
+ j + r3 − 1 =

n

j + n− jb
+ j + n− jb− 2.

Then, we see that

h(b) ≤ n

j + 2
+ (j + 2)− 2 if and only if j + n− jb ∈

[
j + 2,

n

j + 2

]
.

Moreover, for j + n− jb =

⌊
n

j + 2

⌋
+ 1, we get

bh(b)c =

⌊
n

j + 2

⌋
+ j,

since by Theorem 5.7 in [2], and taking into account that j <
√
n, n⌊

n
j+2

⌋
+ 1

 = j + 1.

Therefore, if j + n− jb ∈
[
j + 2,

n

j + 2
+ 1

]
, or equivalently, if

b ∈
[
n+ j − 1− n

j+2

j
,
n− 2

j

]
(13)
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then the second inequality in (12) holds. We finish the proof by showing that any b

satisfying our assumptions is such that (13) holds. Note that, as (j + 1)b − n >
b

2
, we

have 2n/(2j+1) < b ≤ bn/jc−1. Thus, because j ≥ 2, it follows that b ≤ n

j
−1 ≤ n− 2

j
.

If |Ij| ≥ 2, we claim that

n+ j − 1− n
j+2

j
≤ 2n

2j + 1
< b. (14)

Note that if the first inequality would not hold then n ≤ 2j2 + 5j + 1, and, for n =
2j2 + 5j + 1− s with 0 ≤ s ≤ 2j2 + 5j + 1,⌊

n

j + 1

⌋
+ 2 = 2j + 4 +

⌊
j − 1− s
j + 1

⌋
≥ 2j + 4 +

⌊
1− s
j

⌋
=

⌊
n

j

⌋
− 1,

a contradiction since |Ij| ≥ 2.

If |Ij| = 1, then b =

⌊
n

j

⌋
− 1. If (14) holds, we are done. Otherwise, we claim that

n+ j − 1− n
j+2

j
≤ b =

⌊
n

j

⌋
− 1.

To see this, let n =

⌊
n

j

⌋
j + t, with 0 ≤ t < j, and assume that

2n

2j + 1
<

⌊
n

j

⌋
− 1 <

n+ j − 1− n
j+2

j
(15)

in order to get a contradiction. Multiplying (15) by j, we get

2j2 + j + (2j + 1)t < n < 2j2 + 3j − 2 + t(j + 2). (16)

which implies t < 2. If t = 0, then 2j2 + j < n < 2j2 + 3j− 2. Therefore, n = j(2j+ 2) =
2j(j + 1) and ⌊

n

j

⌋
− 1 <

⌊
n

j + 1

⌋
+ 2, (17)

which contradicts our assumption. The case t = 1 cannot occur as, by (16), j(2j+3)+1 <
n < j(2j + 4).

Corollary 23. Let n ≥ 16. Suppose that 2 ≤ b ≤ bn/2c+ 1.

i) If either b /∈
{

2, 3,
⌊n

3

⌋
,
⌊n

3

⌋
+ 1,

⌊n
2

⌋
,
⌊n

2

⌋
+ 1
}

, or b =
⌊n

3

⌋
and n 6= 0 mod 3

then
order({0, 1, b}) ≤

⌊n
4

⌋
+ 2.
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ii) If either b ∈ {3,
⌊n

3

⌋
+ 1}, or b =

⌊n
3

⌋
and n ≡ 0 mod 3, or b =

⌊n
2

⌋
with n odd,

then
order({0, 1, b}) =

⌊n
3

⌋
+ 1.

iii) If either b ∈ {2,
⌊n

2

⌋
+ 1}, or b =

⌊n
2

⌋
and n is even, then

order({0, 1, b}) =
⌊n

2

⌋
.

Proof. By Lemma 22, if b ∈
[⌊n

4

⌋
+ 2,

⌊n
3

⌋
− 1
]
∪
[⌊n

3

⌋
+ 2,

⌊n
2

⌋
− 1]

]
, then order({0, 1, b}) ≤⌊n

4

⌋
+ 2. By Lemma 11, if 4 ≤ b ≤ n/4, then order({0, 1, b}) ≤

⌊n
4

⌋
+ 2. By Lemma 14,

order{0, 1,
⌊n

4

⌋
+ 1} =

⌊n
4

⌋
+ 2. If b =

⌊n
3

⌋
and n 6= 0 mod 3 then

order({0, 1, b}) =

{
order(1 + 3 ∗ {0, 1, b}) = order({0, 1, 4}), if n ≡ 1 mod 3
order(2 + 3 ∗ {0, 1, b}) = order({0, 2, 5}), if n ≡ 2 mod 3

,

and the result follows from Lemmas 26 and 27. Thus, i) follows. If b ∈ {3, bn/3c + 1}
the result follows from Lemmas 14 and 16. If n is odd, then order({0, 1, bn/2c}) =
order(1 + 2 ∗ {0, 1, b}) = {0, 1, 3} and the result follows from Lemma 16. If n ≡ 0 mod
3 and b = n/3, then, for k ≥ 1, kS = [0, k] ∪ [n/3, n/3 + k − 1] ∪ [2n/3, 2n/3 + k − 2]
(in Z). The order of S is the smallest positive integer k such that k − 2 + 2n/3 ≥ n− 1,
that is, k = 1 + n/3, completing the proof of ii). To prove iii), note that, if n is even and
b = n/2, then, for k ≥ 1, kS = [0, k] ∪ [n/2, n/2 + k − 1] (in Z). Thus, the order of S is
the smallest positive integer k such that k − 1 + n/2 ≥ n− 1, that is, order(S) = n/2. If
b ∈ {2, bn/2c+ 1}, the result follows from Lemmas 14 and 15.

4 Proofs of the Main Results

In this section we prove our main results. To prove the first three results, we initially
show that certain orders in each box are attained by giving examples of bases with such
orders. Then, regarding the first two theorems, we prove that the remaining orders are
not attained.

4.1 Proof of Theorem 6

In the next table, we give examples of bases attaining the orders in the second box
according to Theorem 6. The results follow from Lemmas 15 and 17.

Second Box for Zn

n ≡ 0 mod 2 n ≡ 1 mod 2 Order(S)
S = 〈n/2〉 ∪ (1 + 〈n/2〉) — bn/2c − 1

S = {0, 1, 2} S = {0, 1, 2} bn/2c
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We now assume that n ≥ 17 and n is odd, and show that there is no basis S ⊆ Zn

such that order(S) = bn/2c − 1.
Assume that S ⊂ Zn is a basis such that order(S) = bn/2c−1. By Lemma 10, |S| ≤ 3.

Note that, by definition of basis, |S| ≥ 2 and, by Lemma 1, |S| 6= 2 if order(S) 6= n− 1.
Thus |S| = 3. Suppose S = {0, a, b} where a, b ∈ Zn. If a had order m 6= n, then
3 ≤ m < bn/2c, since n is odd. By Corollary 19, this would imply that order(S) ≤
m + n/m− 2 < bn/2c − 1, as n ≥ 17. Therefore, a must have order n. Then, S has the
same order as a−1S = {0, 1, c} for some c ∈ Zn. If c > bn/2c + 1, then S has the same
order as 1−a−1S = {0, 1, d} with d ≤ bn/2c+1. Thus, we can assume that c ≤ bn/2c+1.
Now using Corollary 23, we get order(S) 6= bn/2c − 1, a contradiction.

4.2 Proof of Theorem 7

The next table gives examples of bases attaining the conjectured orders in the third box
according to Theorem 7. The results follow from Lemmas 15, 16, and 17.

Third Box for Zn

n ≡ 0 mod 3 n ≡ 1 mod 3 n ≡ 2 mod 3 Order(S)
S = 〈n/3〉 ∪ (1 + 〈n/3〉) — — bn/3c − 1

S = {0, 1, 2, 3} S = {0, 1, 2, 3} — bn/3c
S = {0, 1, 3} S = {0, 1, 3} S = {0, 1, 3} bn/3c+ 1

The fact that, for n ≥ 45, order(S) 6= bn/3c − 1, if n ≡ 1 mod 3, and order(S) /∈
{bn/3c− 1,bn/3c}, if n ≡ 2 mod 3, follows from Lemma 24. Just note that, if order(S) ∈
{bn/3c − 1, bn/3c}, then, by Lemma 10, |S| ≤ 3 if n is odd and |S| ≤ 4 if n is even.

We note that the statement in the next lemma is stronger than what we need to prove
Theorem 7. In particular, when n is odd, the case in which |S| = 4 needed not to be
considered. However, the techniques we used for the purpose of the proof of Theorem 7
allowed us to get this result, which in turn is useful in the proof of Corollary 25.

Lemma 24. Let n ≥ 45 and suppose that 3 is not a divisor of n. Let S be a basis for Zn.
If |S| ≤ 4, then

order(S) ≤
⌊n

4

⌋
+ 2 or order(S) ≥ bn/3c .

Moreover, if order(S) = bn/3c then n ≡ 1 mod 3.

Proof. Without loss of generality, assume 0 ∈ S. Suppose that n 6= 0 mod 3. Since S is
a basis, |S| > 1. If |S| = 2, then order(S) = n − 1 > bn/3c . Suppose that |S| = 3 or
|S| = 4. If S has an element whose order is not 1, 2, n/2 nor n, then, by Corollary 19,
the result follows. Suppose that the order of the elements in S is 1, 2, n/2, or n, where
2 and n/2 only occur when n is even. If S has an element of order 2, then the result
follows from Corollary 20. If S does not contain an element of order 2, then necessarily
it contains an element of order n. Moreover, by (1), if S has an element of order n, the
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basis S has the same order as some basis of the form {0, 1, a, b}. If |S| = 3, then we can

assume that S = {0, 1, a}, wit 1 < a ≤
⌊n

2

⌋
+ 1. In this case, the result follows from

Corollary 23. If |S| = 4, assume that S = {0, 1, a, b} with a ≤
⌊n

2

⌋
+ 1. Since for S ′ ⊂ S,

order(S) ≤ order(S ′), we have

order({0, 1, a, b}) ≤ min{order({0, 1, a}), order({0, 1, b})}. (18)

Let
A1 = {2, 3,

⌊n
3

⌋
+ 1,

⌊n
2

⌋
,
⌊n

2

⌋
+ 1}

and
A2 = {2, 3,

⌊n
3

⌋
+ 1,

⌊n
2

⌋
,
⌊n

2

⌋
+ 1, 1−

⌊n
2

⌋
,−
⌊n

3

⌋
,−2,−1}

Note that −
⌊n

2

⌋
∈ A2. Also, 1 − bn/2c ≡ bn/2c + 1 mod n, for n even. If a /∈ A1 or

b /∈ A2 then, by Corollary 23 and taking into account (18),

order({0, 1, a, b}) ≤ min{order({0, 1, a}), order({0, 1, b})} ≤
⌊n

4

⌋
+ 2.

Recall that order({0, 1, 1− b}) = order({0, 1, b}). If a ∈ A1 and b ∈ A2, the result follows
from Lemmas 29, 30, 31, 32 and 33.

The following result was presented in [6]. However, the authors leave most of the
details of the proof to the reader and we do not see clearly that the result follows from
their proof. For that reason and for completeness we are including it in this paper.

Corollary 25. Let S be a basis for Zn. Then,

order(S) /∈
[⌊n

4

⌋
+ 3,

⌊n
3

⌋
− 2
]
.

Proof. Note that, for n < 45, the interval in the statement is empty. Assume that
n ≥ 45. Without loss of generality, suppose that 0 ∈ S. If S ⊂ Zn is a basis such that
bn/4c + 3 ≤ order(S), by Lemma 10, |S| ≤ 6. Assume that n 6= 0 mod 3. If |S| = 5
or |S| = 6, by [1, Theorem 3.7], order(S) ≤ bn/4c + 1. If |S| ≤ 4, by Lemma 24,
order(S) ≤ bn/4c+ 2 or order(S) ≥ bn/3c.

Now assume that n ≡ 0 mod 3. If |S| = 3, the result follows from Corollary 23.
Suppose that |S| ∈ {4, 5, 6}. If bn/4c + 3 ≤ order(S), by Corollary 19, the order of the
elements in S must be 1, 2, 3, n/2, n/3, or n. First note that S contains, or has the same
order as a basis which contains, an element of order 2, 3 or n. In fact, if |S| = 4 and S does
not have an element of order 2, 3 or n, then S has an element of order n/2 and an element
of order n/3. Hence, {0, 2a, 3b} ⊆ S for some a, b ∈ Zn. Since S is a basis, 3b− 2a is not
an element of order n/2 nor n/3 as, otherwise, 6 would divide 2a or 3b and all elements of
S would be multiples of 2 or multiples of 3. Thus, S has the same order as S − 2a, which
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has an element of order 2, 3 or n. A similar argument can be applied if |S| = 5 or |S| = 6.
Thus, assume that S contains an element of order 2, 3 or n. If S contains an element of
order 2 or 3, the result follows from Corollaries 20 and 21. Now suppose that S contains
an element of order n and no elements of order 2 and 3. If either n/3 + 1 ∈ S or n is even
and n/2 + 1 ∈ S, then S can be transformed into a basis with the same order containing
zero and an element of order 2 or 3 and we reduce the problem to the previous case.
Let A1 = {2, 3, bn/2c, bn/2c + 1} and A2 = {2, 3, bn/2c, bn/2c + 1, 1 − bn/2c,−2,−1}.
Assume that S = {0, 1, a, b, c, d}, with a ≤ bn/2c + 1 and b = c = d if |S| = 4, and
c = d if |S| = 5. Note that if S ′ ⊂ S then order(S) ≤ order(S ′). If a /∈ A1 or, b,c, or
d /∈ A2 the result follows from Corollary 23. Suppose that a ∈ A1, b, c, d ∈ A2 and if a, b, c
or d ∈ {bn/2c, bn/2c + 1, 1 − bn/2c} then n is odd. If |S| = 4, the result follows from
Lemmas 29, 30, 31, 32 and 33. If |S| = 5 or |S| = 6 the result follows from Remark 34
by noting that S has a subset of cardinality 4 containing 0 and 1 which is not one of the
exceptional bases and, therefore, order(S) ≤ bn/4c+ 2.

4.3 Proof of Theorem 8

The next table gives examples of bases attaining the orders in the fourth box of Zn claimed
in Theorem 8. The results follow from Lemmas 14, 15, 16, and 17.

Fourth Box for Zn

n ≡ 0 mod 4 n ≡ 1 mod 4 n ≡ 2 mod 4 n ≡ 3 mod 4 Order(S)
〈n/4〉∪ (1+ 〈n/4〉) — — — bn/4c − 1

{0, 1, 2, 3, 4} {0, 1, 2, 3, 4}
2⋃

i=0

(i + 〈n/2〉) — bn/4c

{0, 1, 2, 4} {0, 1, 2, 4} {0, 1, 2, 4} {0,1,2,4} bn/4c+ 1
{0, 1, (n/4) + 1} {0, 1, bn/4c+ 1} {0, 1, bn/4c+ 1} {0, 1, bn/4c+ 1} bn/4c+ 2

4.4 Proof of Theorem 9

If n ≤ 4, the result follows from Table 1. Assume n ≥ 5. Notice that Zn is always a basis
for Zn, which implies that 1 ∈ En. Consider the set S = {0, 1, 2, ..., r − 1, r + 1} with

2 ≤ r ≤ n− 2. By Lemma 16, order(S) =

⌈
n+ 1

r + 1

⌉
. For all r ≥

√
n− 1

n+ 1

r + 1
− n+ 1

r + 2
=

n+ 1

(r + 1)(r + 2)
=

n+ 1

r2 + 3r + 2
≤ n+ 1

n+
√
n
< 1.

It can be easily seen that, for positive real numbers a and b, dae − dbe ≤ da− be.

Thus,

⌈
n+ 1

r + 1

⌉
−
⌈
n+ 1

r + 2

⌉
≤ 1 for all r ≥

√
n− 1, which implies that all integers from 2

to

⌈
n+ 1

d
√
ne − 1 + 1

⌉
are attained orders. But

⌈
n+ 1

d
√
ne

⌉
≥
⌈

n

d
√
ne

⌉
≥
⌊√

n
⌋

and the result

follows.
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A Gallery of bases and their orders.

Lemma 26. For n ≥ 6, order({0, 1, 4}) = bn/4c+ 2.

Proof. Let S = {0, 1, 4}. It can be shown by induction on k that in Z, for all k ≥ 2,

kS = [0, 4k − 6] ∪ [4k − 4, 4k − 3] ∪ {4k}.

Let q = bn/4c . Then,

(q + 1)S = [0, 4q − 2] ∪ [4q, 4q + 1] ∪ {4q + 4} and [0, 4q + 2] ⊆ (q + 2)S.

Note that, as n ≥ 6, 4q + 4 6= 4q − 1 (mod n). Thus, (q + 1)S 6= Zn (modn). On the
other hand, 4q + 2 ≥ n− 1. Thus, the result follows.

Lemma 27. For n ≥ 6, order({0, 2, 5}) ≤ bn/5c+ 3.
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Proof. Let S = {0, 2, 5}. It can be shown by induction on k that in Z, for all k ≥ 2,

kS = {0, 2} ∪ [4, 5k − 8] ∪ [5k − 6, 5k − 5] ∪ {5k − 3, 5k}.

Let q = bn/5c . Then,
{0, 2} ∪ [4, 5q + 7] ⊆ (q + 3)S.

Since 5q + 7 ≥ n+ 3, the result follows.

Lemma 28. For n ≥ 4, order({0, 2, 3, 4}) = bn/4c+ 1.

Proof. Let S = {0, 2, 3, 4}. By induction on k, it can be shown that kS = {0} ∪ [2, 4k],
k ≥ 1. Let q = bn/4c . Since 4q ≤ n, then 1 /∈ qS (modn). On the other hand, 4(q+ 1) ≥
n+ 1. Thus, the result follows.

Bases of the form {0, 1, 2, a}

Lemma 29. Let n ≥ 21. Let a ∈ {3, bn/3c+1, bn/2c , bn/2c+1, 1−bn/2c ,−bn/3c ,−2,−1}
and S = {0, 1, 2, a}. Then,

order(S) ≤ bn/4c+ 2 or order(S) ≥ bn/3c − 1.

Moreover, if n ≡ 1 mod 3, then order(S) 6= bn/3c−1 and if n ≡ 2 mod 3, then order(S) /∈
{bn/3c − 1, bn/3c}.

Proof. Case 1: If a ∈ {3,−1}, then the basis S has the same order as {0, 1, 2, 3} and the
result follows by Lemma 15.

Case 2: If a = −2, then S has the same order as 2 + S = {0, 2, 3, 4} and the result
follows from Lemma 28.

Case 3: Suppose that a ∈ {bn/2c , bn/2c+ 1, 1−bn/2c}. Assume n is even. Note that
1− bn/2c = bn/2c+ 1. In this case, S contains an element of order 2 or it has the same
order as a basis containing 0 and an element of order 2. Thus, the result follows from
Corollary 20. Assume n is odd. Then,

order({0, 1, 2, bn/2c}) = order({0, 1, 3, 5}) ≤ order({0, 1, 5}),

and
order({0, 1, 2, bn/2c+ 1}) = order({0, 1, 2, 4}) ≤ order({0, 1, 4}).

In both cases, order(S) ≤ bn/4c+ 2 by Corollary 23. Also,

order({0, 1, 2, bn/2c+ 2}) = order({0, 2, 3, 4}) ≤ bn/4c+ 2

by Lemma 28. Note that 1− bn/2c = bn/2c+ 2.
Case 4: Suppose that a ∈ {−bn/3c , bn/3c + 1}. If n ≡ 0 mod 3, then S contains an

element of order 3 or it has the same order as a basis containing 0 and an element of order
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3. Thus, the result follows from Corollary 21. Let n ≡ 1 mod 3. If a = −bn/3c, then
3 ∗ S = {0, 1, 3, 6} and

order(S) = order(3 ∗ S) ≤ order({0, 1, 6});

if a = bn/3c+ 1, then 3 ∗ S − 2 = {0, 1, 4,−2} and

order(S) = order(3 ∗ S − 2) ≤ order({0, 1, 4}).

In both cases, order(S) ≤ bn/4c+ 2 by Corollary 23. If n ≡ 2 mod 3, then

order({0, 1, 2,−bn/3c}) = order({0, 1, 4,−2})

and
order({0, 1, 2, bn/3c+ 1}) = order({0, 1, 3, 6}),

and the result follows as before.

Bases of the form {0, 1, 3, a}

Lemma 30. Let n ≥ 30. Let a ∈ {bn/3c+1, bn/2c , bn/2c+1, 1−bn/2c ,−bn/3c ,−2,−1}
and S = {0, 1, 3, a}. Then,

order(S) ≤
⌊n

4

⌋
+ 2 or order(S) ≥

⌊n
3

⌋
− 1.

Moreover, if n ≡ 1 mod 3, then order(S) 6= bn/3c−1 and if n ≡ 2 mod 3, then order(S) /∈
{bn/3c − 1, bn/3c}.

Proof. Case 1: If a = −1, then order(S) = order{0, 1, 2, 4} ≤ bn/4c+ 2 by Corollary 23.
Case 2: If a = −2, then order(S) = order({0, 2, 3, 5}) ≤ bn/4c+ 2 by Lemma 27.
Case 3: Suppose that a ∈ {bn/3c + 1,−bn/3c}. If n ≡ 0 mod 3, then S contains an

element of order 3 or it has the same order as a basis containing 0 and an element of order
3. Thus, the result follows from Corollary 21. If either a = bn/3c + 1 and n ≡ 1 mod 3
or a = −bn/3c and n ≡ 2 mod 3, we have

order(S) = order({0, 2, 3, 9}) = order({−2, 0, 1, 7}) ≤ order({0, 1, 7});

if either a = bn/3c+ 1 and n ≡ 2 mod 3 or a = −bn/3c and n ≡ 1 mod 3, we have

order(S) = order({0, 1, 3, 9}) ≤ order({0, 1, 9}).

In both cases, by Corollary 23, order(S) ≤ bn/4c+ 2.
Case 4: Suppose that a ∈ {bn/2c , bn/2c + 1, 1 − bn/2c}. Assume n is even. In this

case, S contains an element of order 2 or it has the same order as a basis containing 0
and an element of order 2. Thus, the result follows from Corollary 20. Assume n is odd.
Then,

order({0, 1, 3, bn/2c}) = order({0, 1, 3, 7}) ≤ order({0, 1, 7}),
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order({0, 1, 3, bn/2c+ 1}) = order({0, 1, 2, 6}) ≤ order({0, 1, 6}),

and

order({0, 1, 3, 1− bn/2c}) = order(0, 2, 3, 6}) = order({−2, 0, 1, 4}) ≤
≤ order({0, 1, 4}).

In any case, by Corollary 23, order(S) ≤ bn/4c+ 2.

Bases of the form {0, 1,
⌊n

3

⌋
+ 1, a}

Lemma 31. Let n ≥ 30. Let a ∈
{⌊n

2

⌋
,
⌊n

2

⌋
+ 1, 1−

⌊n
2

⌋
,−
⌊n

3

⌋
,−2,−1

}
and S =

{0, 1,
⌊n

3

⌋
+ 1, a}. Then,

order(S) ≤
⌊n

4

⌋
+ 2 or order(S) ≥

⌊n
3

⌋
− 1.

Moreover, if n ≡ 1 mod 3, then order(S) 6= bn/3c−1 and if n ≡ 2 mod 3, then order(S) /∈
{bn/3c − 1, bn/3c}.

Proof. If n ≡ 0 mod 3, then S contains an element of order 3 or it has the same order as
a basis containing 0 and an element of order 3. Thus, the result follows from Corollary
21. Now assume n 6= 0 mod 3.

Case 1: Suppose that n is even and a ∈ {n/2, n/2 + 1, 1 − n/2}. Then S contains
(or can be transformed into a basis of the same order with) 0 and an element of order 2,
which, by Corollary 20, implies the result.

Case 2: Suppose that either a ∈ {−2,−1,−bn/3c} or n is odd and a ∈ {bn/2c , bn/2c+
1, 1− bn/2c}.

Subcase 2.1. Suppose that n ≡ 1 mod 3. Then, 3 ∗ S = {0, 2, 3, 3a}. If a = −bn/3c ,
then 3a = 1 and, by Lemma 15, order(S) = bn/3c. If a ∈ {−2,−1}, then

order(S) = order(3 ∗ S − 2) = order({0, 1, 3a− 2,−2}) ≤ order({0, 1, 3a− 2})
= order({0, 1, 3− 3a});

if n is odd and a ∈ {bn/2c , bn/2c+ 2}, then 3a ∈ {bn/2c − 1, bn/2c+ 5} and

order(S) = order(3 ∗ S − 2) = order({0, 1, 3a− 2,−2})
≤ order({0, 1, 3a− 2}).

In both cases, order(S) ≤ bn/4c + 2 by Corollary 23. Note that for 3a = bn/2c + 5,
order({0, 1, 3a− 2}) = order({0, 1, bn/2c − 1}). If a = bn/2c+ 1, then

order(S) = order(6 ∗ S − 3) = order({0, 1, 3,−3}) ≤ order({0, 1,−3})
= order({0, 1, 4}) ≤ bn/4c+ 2,
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by Corollary 23.
Subcase 2.2. Suppose that n ≡ 2 mod 3. Then, 3 ∗ S = {0, 1, 3, 3a}. If a = −bn/3c ,

then 3a = 2 and, by Lemma 15, order(S) = bn/3c+ 1. If a ∈ {−2,−1}, then

order(S) = order(3 ∗ S) = order({0, 1, 3, 3a}) ≤ order({0, 1, 3a})}
= order({0, 1, 1− 3a});

if n is odd and a ∈ {bn/2c , bn/2c+ 2}, then 3a ∈ {bn/2c − 1, bn/2c+ 5} and

order(S) = order({0, 1, 3, 3a}) ≤ order({0, 1, 3a}).

In both cases, order(S) ≤ bn/4c + 2 by Corollary 23. Note that, for 3a = bn/2c + 5,
order({0, 1, 3a}) = order({0, 1, bn/2c − 3}). If a = bn/2c+ 1, then 3a = bn/2c+ 2 and

order(S) = order({0, 1, 3, bn/2c+ 2}) = order({0, 2, 3, 6})
= order({−2, 0, 1, 4}) ≤ order({0, 1, 4}) ≤ bn/4c+ 2,

by Corollary 23.

Bases of the form {0, 1,
⌊n

2

⌋
, a}

Lemma 32. Let n ≥ 22. Let a ∈ {bn/2c + 1, 1 − bn/2c ,−bn/3c ,−2,−1} and S =
{0, 1, bn/2c , a}. Then,

order(S) ≤
⌊n

4

⌋
+ 2 or order(S) ≥ bn/3c − 1.

Moreover, if n ≡ 1 mod 3, then order(S) 6= bn/3c−1 and if n ≡ 2 mod 3, then order(S) /∈
{bn/3c − 1, bn/3c}.

Proof. If n is even, then S contains an element of order 2 and the result follows from
Corollary 20. Now suppose that n is odd. Note that 2 ∗ S + 1 = {0, 1, 3, 2a+ 1}.

For a = −1, order(S) = order({0, 1, 3,−1}) = order({0, 1, 2, 4}) ≤ bn/4c + 2, by
Corollary 23.

For a = −bn/3c and n ≡ 0 mod 3, S contains an element of order 3 and the result
follows from Corollary 23.

For a = bn/2c + 1, order(S) = order(2 ∗ S + 1) = {0, 1, 2, 3} and the result follows
from Lemma 15.

Now suppose that a does not satisfy the previous cases. We have
order(S) = order({0, 1, 3, b}), with b ∈ {4, bn/3c+t+1,−3}, where 0 < t = n−3 bn/3c ≤
2. Thus,

order(S) ≤ order({0, 1, b}) ≤ bn/4c+ 2

by Corollary 23.

Bases of the form {0, 1,
⌊n

2

⌋
+ 1, a}
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Lemma 33. Let n ≥ 21. Let a ∈ {1 − bn/2c ,−bn/3c ,−2,−1} and S = {0, 1, bn/2c +
1, a}. Then,

order(S) ≤
⌊n

4

⌋
+ 2 or order(S) ≥ bn/3c − 1.

Moreover, if n ≡ 1 mod 3, then order(S) 6= bn/3c−1 and if n ≡ 2 mod 3, then order(S) /∈
{bn/3c − 1, bn/3c}.

Proof. If n is even, then S has the same order as S − 1, which contains 0 and an element
of order 2. Thus, the result follows from Corollary 20. Now suppose that n is odd. Then,
order(S) = order({0, 1, 2, 2a}).

If a = 1− bn/2c = bn/2c+ 2, then 2a = 3 and the result follows from Lemma 15.
If a = −2, then 2a = −4 and, by Corollary 23,

order(S) ≤ order({0, 1,−4}) = order({0, 1, 5}) ≤ bn/4c+ 2.

If a = −1, then 2a = −2 and, by Lemma 28, order(S) = order({0, 2, 3, 4}) ≤ bn/4c+2.
Suppose that a = −bn/3c. If n ≡ 0 mod 3, then S contains 0 and an element of order

3 and the result follows from Corollary 21. If n ≡ 1 mod 3, then S = {0, 1, 2, bn/3c+ 1}
and the result follows from Lemma 29. If n ≡ 2 mod 3, then, by Corollary 23,

order(S) = order({0, 1, 2, bn/3c+ 2}) ≤ order({0, 1, bn/3c+ 2}) ≤ bn/4c+ 2.

Remark 34. Suppose that S = {0, 1, a, b}, with a ∈ {2, 3, bn/2c, bn/2c + 1} and b ∈
{2, 3, bn/2c, bn/2c + 1, 1 − bn/2c,−2,−1}, where n is odd if a or b ∈ {bn/2c, bn/2c +
1,−bn/2c}. From the proofs of Lemmas 29, 30, 31, 32 and 33, we get that order(S) ≤
bn/4c+ 2 if S is not one of the next exceptional bases:

{0, 1, 2, 3}, {0, 1, 2,−1}, {0, 1, bn/2c , bn/2c+ 1}, {0, 1, bn/2c+ 1, 1− bn/2c}.

Note that all of them have the same order as {0, 1, 2, 3}.
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